

Nowcasting and Community SWIRLS

SWFDP-SeA RFSC Training Desk, Hanoi, Vietnam

16 – 20 December 2019

Overview

- On Nowcasting
- SWIRLS in Hong Kong
- Community SWIRLS (Com-SWIRLS)
- WMO RSMC for Nowcasting
- Latest Developments

ON NOWCASTING

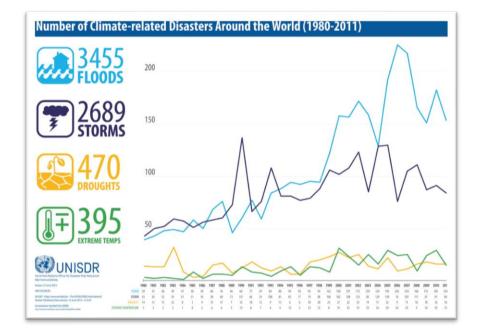
Toga Gawa 2008-07-28 1 4:22:21

Japan July 2008 50 People Washed Away

5 Died

This Tragedy could have been Prevented if only they knew 10 minutes in advance that a flood was coming.

Every year, Storms & Floods kill Thousands and wipe away properties of Tens of Billions of Dollars.


Myanmar

Bangladesh

Sri Lanka

Thailand

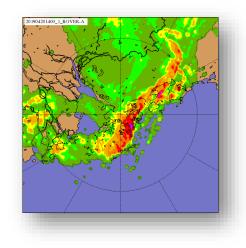
Sudden & Extreme Weather keeps Increasing under Climate Change.

Scales of Weather Forecasts

Time Horizon

3 Month Forecast

	Temperature Forecast	Rainfall Forecast
Jun – Aug 2019	Normal to above normal	Normal to above normal
Mar – May 2019	Normal to above normal	Normal to above normal
Dec 2018 – Feb 2019	Normal to above normal	Normal to above normal
Sep – Nov 2018	Normal to above normal	Normal to below normal


Roughly

1 - 9 Day Forecast

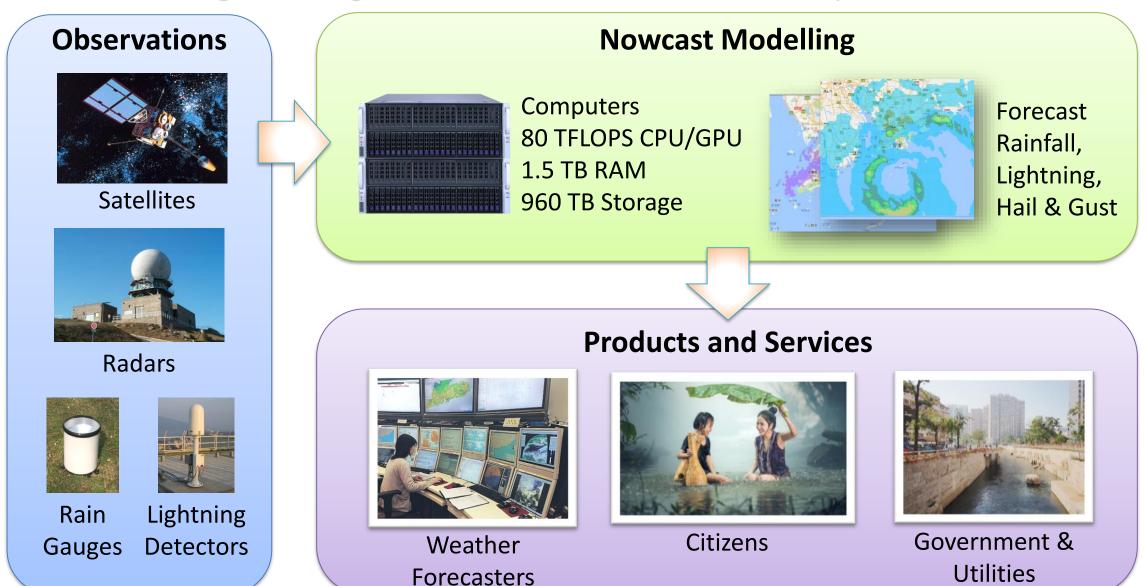
Generally

0 – 6 Hour Nowcast

Precisely

Nowcasting - Resolutions Matter

10 km


19 16 14 20 26 22 18 20 23 22 21 13 05 15 19 23 29 35 36 38 25 13 14 15 14 13 09 06 09 12 16 17 19 20 20 19 19 21 23 20 18 15 13 15 18 20 23 24 25 26 28 22 17 16 15 14 12 09 06 08 09 12 18 24 19 14 17 20 21 23 19 15 18 21 21 21 22 22 19 16 17 18 19 20 18 16 14 12 09 06 06 06 19 17 20 22 23 23 23 23 23 24 2 2 2 2 19 5 16 18 16 15 14 18 18 18 16 14 12 10 09 07 07 05 12 17 21 13 15 18 19 19 22 25 24 23 26 28 26 24 16 09 11 13 14 14 19 18 17 16 14 12 10 09 08 08 08 08 09 15 19 24 24 24 24 24 20 19 14 18 11 13 15 13 12 43 13 16 18 15 12 10 08 08 09 09 01 1.0 1.3 1.5 0. 18 14 20 16 13 10 06 09 11 09 0 7 10 13 11 10 16 22 23 24 22 20 12 04 09 13 15 KoeloegChu 0.9 12 16 18 20 20 20 14 0.7 10 12 14 17 14 11 08 10 09 08 09 10 13 16 18 20 15 10 11 11 14 17 15 12 10 06 0 09 11 13 13 14 14 15 14 13 14 15 16 16 11 13 15 14 12 11 09 13 16 18 20 1 13 15 15 15 13 11 10 19 13 17 16 16 1 11 12 15 19 17 15 13 10 10 10 14 17 15 13 14 15 17 19 14 09 06 04 09 8 17 15 14 13 12 11 14 18 17 16 17 18 18 18 15 12 10 08 1. 14 16 19 18 18 16 Central & Wenter 14 12 15 1/8 18 18 19 20 19 18 17 15 14 13 13 13 14 17 18 18 17 18 18 15 13 16 18 18 18 18 18 18 17 15 18 16 16 15 32 19 11 14 18 19 20 20 20 17 14 16 19 18 17 16 15 14 13 15 17 17 17 11 05 08 11 11 11 09 1 16 18 19 19 20 21 23 22 21 19 16 16 16 16 16 15 14 13 12 14 16 16 16 09 02 05 08 09 11 18 29 23 22 21 23 26 24 22 20 18 16 14 14 14 13 13 12 12 14 16 45 16 08 00 02 05 08 11 16 19 22 22 22 24 26 24 23 20 18 16 13 44 14 14 14 13 13 16 18 18 18 18 00 05 14 18 22 22 23 25 27 25 23 21 19 16 12 13 14 14 15 15 15 18 21 20 20 11 03 04 06 09 13 16 20 21 22 23 24 23 22 20 48 16 14 14 14 14 14 14 15 19 23 2 12 15 18 19 20 21 21 21 20 19 18 16 15 15 15 13 12 14 15 20 24 22 20 13 147 16 17 18 19 19 17 16 17 18 17 16 15 13 18 14 15 15 20 25 24 22 17 12 14 14 15 15 15 16 17 15 12 15 18 18 18 17 16 11 11 11 13 15 21 27 26 25 19 1 6 16 15 15 46 17 18 15 12 14 17 16 15 12 09 10 12 14 17 21 28 20 20 14 11 09 06 04 06 1 9 17 16 16 16 18 20 16 11 14 15 14 12 09 07 10 13 16 19 21 24 25 27 20 13 10 07 06 04 06 1 20 21 21 19 18 18 18 16 13 14 15 13 12 10 09 12 15 18 20 20 19 19 18 15 11 09 0

Range Interval Forecast 1 – 9 Day Hourly **Nowcast** 0 – 6 Hour 6-Minutely

SWIRLS Nowcast System

SWIRLS: Short-range Warning of Intense Rainstorms in Localized Systems

With SWIRLS Nowcasting

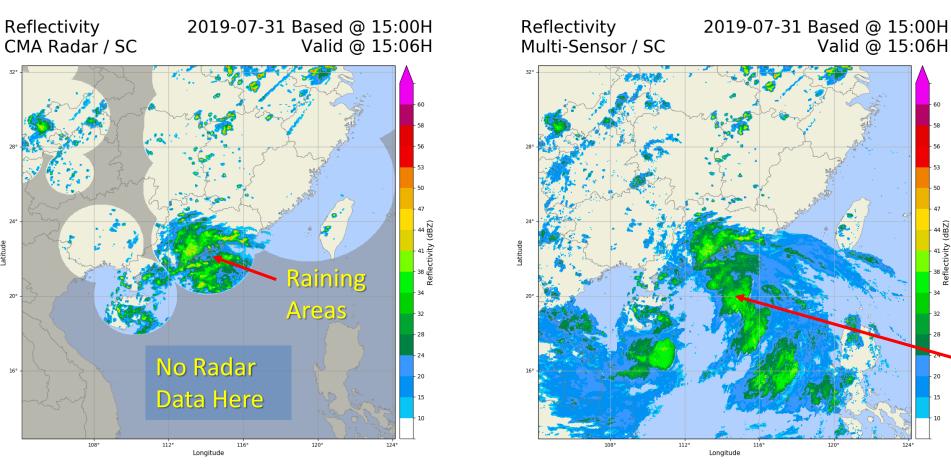
Weather Forecasters

Issue Weather Warnings and Forecasts, which

- Save Lives
- Protect Properties

Citizens

Government <u>& Utilities</u>


Decide whether to:

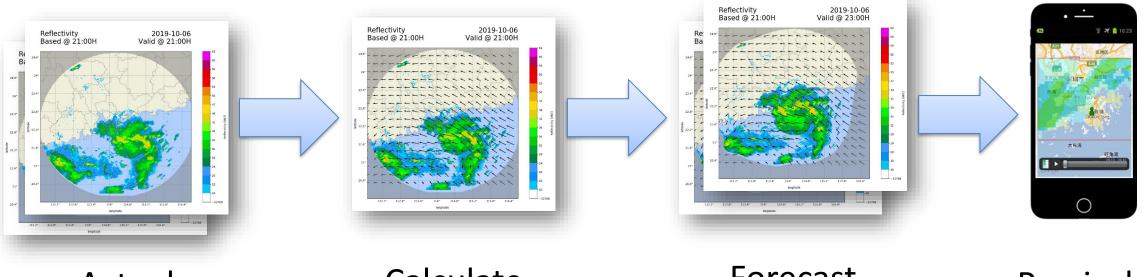
- Seek Shelter?
- Bring Umbrellas?
- Cancel Hiking?
- Indoors or Outdoors?

Respond to:

- Improve Ecology of Wetland
- Enhance Productivity of Works
- Mobilize Staff in Advance
- Increase Power Supply Stability
- Suspend and Resume Operations

1. Simulate Radar Data from Satellite's using Al Neural Network in SWIRLS

Raining Areas Far Away Simulated with Satellites' Data Using Our Neural Network


香港天文台

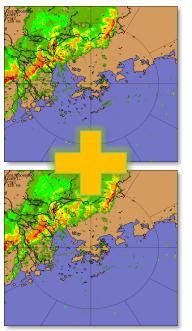
IONG KONG OBSERVATORY

With Our Neural Network

Original

2. Nowcast with AI Computer Vision in SWIRLS

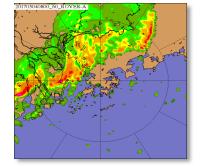
Actual Raining Areas Calculate Speed & Direction of Raining Areas By Al Computer Vision Forecast Raining Areas Using **GPU**


Precisely Where, When & How Much Rainfall

巷 天 文 台

3. Next-Generation of SWIRLS AI Nowcast Enhanced Accuracy with Deep Learning

Actual Radar Images


Deep Learning Nowcast

Big Data 7 Years of Historical Data 140 Billions of Data Points

Trained AI Models to Predict Radar Images

Edge-Cutting Algorithms:

- Convolutional LSTM (Long-Short-Term-Memory)
- Trajectory GRU (Gated Recurrent Unit)

Forecast Radar Images

Pioneered "Deep Learning Nowcast"

Research Papers Related to SWIRLS Nowcast (新音港天文台 HONG KONG OBSERVATORY

May 2014

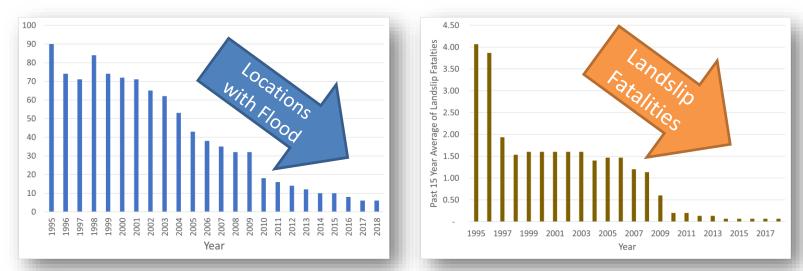
AN ALGORITHM TO ENHAN TROPICAL CYCLONES

International / Regional **Conference** Paper

			RR_1	Development of Satellite Ro for Tropical Cyclon W.C. Woo ¹ , Y.Y. Ip ² , V	e Rainfall Nowcas	ting	
			Abstract	Collaborative Dev	elopment of the	Community SWIRLS Now	cast System
			Recent year		The Hong K	Kam ² , Ka-chun Shek ¹ , Ka-ho cong Observatory versity of Hong Kong	o Ng ¹
		Specific Light	0		Observator	y (HKO) currently shares	the Community
	CH	AN Ngo-hin W Hong Kong O		un	Com-SWIR	LS) with meteorological m provide or enhance their	and hydrological
			ootratory		u neips the	in provide of enhance then	d xarray, Com-
				小渦旋臨近預報系統	先熱帶氣旋模塊的		radar data, and pitation forecast
	017, the Hong			應用個案分析:國	电風妮妲(1604)		a collaborative
	of predicted						
public to a	ppreciate the	develop		Experin	nental Locatio	n Specific Probabilistic	Rainfall Nowcast
location	ry actions ag	and and it					
strikes w minutes. nowcast"				HOP ON TROPICAL CYCLON	ES	ng-chun ¹ and Lok Ka-ma ong Kong Observatory e University, United King	
alarm rat hour.	8.2: Challe	nges and Advances	elated to TC Rain	nfall Forecast			
Keyword	Rapporteur:	WOO Wang-chun				Abstract	
		Hong Kong Observa		wloon, Hong Kong, China.		atory (HKO) currently	
	Free II.		isin sin isu, is	initial, nong nong, cinita		e Warning of Intense R	wcasts through th
	Email: Phone:	wcwoo@hko.go +852 2926 8453	An Auton	nated System to Express A as well as Forecast Rai			ucts are simple the general public
	Wallace HOGS	(previous		WOO Wang-chun ¹ YEUN ¹ Hong Kong Observatory	G Hoi-lam ¹ LEUN ² The University of	NG Ming-tak ² Hong Kong	ast (PQPN) ca decision making
	M. MOHAPAT Kazuhiko NAG			А	bstract		is tolerance leve loped a "SWIRL
	Peter OTTO QI Liangbo	Bureau o Shanghai		3, the Hong Kong Observatory ted messages for forecasters' re			e of 36 member
	VO Van Hoa XU Yinglong	National China Me		gional rainfall records and quar			ng of echo motion SERN outputs t lso been conducte
	Abstract:		on thunders revamped to	stem was optimised and expand storms and induced gusts. The o make the rainfall, thunderstor	e regionalization me rm and gust message	echanism in the system was es more precise and accurate	erved frequencie ntensity threshold
		tion from tropical an important role		user-defined word count limit. stem, and briefly describes the			pectively. Relativ ensity threshold of
	many lives and disasters. An el	cause substantial dan ffective warning system	nage to infrastruction m supported by so	ure through flooding, landslides ar ound science, observation network s is necessary to mitigate such adve	nd other secondary s, forecast support	xceedance at 50%, the phe probability of false de	probability of detection tection is only 1%. The
	Quantitative Pr Meteorological systems have s warn for severe maritime obse algorithms, add	recipitation Estimate (and Hydrological Ser ignificantly advanced e weather in a timely, is rvations, would be his vection-based models, commendations for N	QPE) and Quantita vices (NMHS). Ger in the past four ye accurate and precise and to overcome to and NWP models	observation network as well as mu titve Precipitation Forecast (QPF) nerally speaking, observation nets ears. It however remains a challen se manner. Some limitations, such ut still a lot of improvements, li s, could be achievable. The repor when formulating strategies to n	in several National works and forecast ge to forecast and as relatively sparse ke enhancing QPE t concludes with a	s to provide reasonably no-rain scenarios.	renaole rQriv and

Academic Journal Papers

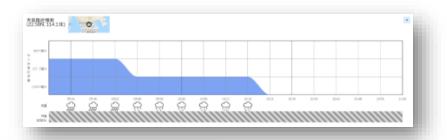
	C	Cited 1,300+	times
		onal LSTM Network: A proach for Precipitation	0
	Xi	ngjian Shi Zhourong Chen Hao Wan	ng Dit-Yan Yeung
	Deep Learning for Preci A Benchmark and		e.ust.hk
	Xingjian Shi, Zhihan Gao, Leonard L Department of Computer Sc Hong Kong University of Sc (xshiab,zgaoag,lelausen,hwan	ience and Engineering ience and Technology	rainfall intensity in a previous studies have
Article Operational Application to Radar-Based Rainfall Wang-chun Woo [*] and Wai-kin Wong	n of Optical Flow Techniques Nowcasting	hun Woo alory na .gov.hk sts of regional rainfall, precipita- ndamental technology underlying	roblem from the ma- tipitation nowcasting soft the input and the g the <i>fully connected</i> the input-to-state and <i>M</i> (ConvLSTM) and ion nowcasting prob- tures spatiotemporal and the state-of-the- ng.
	bservatory, Hong Kong 999077, China; wkwong@hko.gov.hk 852-2926-8453	varnings to flight safety. Recently, s been shown to outperform tradi- a nowcasting, suggesting that deep	
WOO ET AL	25 February 2017 ruse developed rainfall nowcasting 1 Localized Systems (SWIRLS)' to c rucial step in rainfall nowcasting trapolation of rainfall areas in the	g the problem. However, the con- ased models is <i>location-invariant</i> ation) are <i>location-variant</i> in gen- ecipitation nowcasting is a newly it yet been established. To address ind a benchmark for precipitation	
LGORITHM TO ENHANCE NOWCAST OF RAINFALL BROU TROPICAL CYCLONES THROUGH SEPARATION OF MOTIO	UGHT BY thod in its first operational version	the location-variant structure for chmark that includes a real-world	
W.C. Woo ¹ , K.K. Li ² , MICHAEL BALA ³ ¹ Hong Kong Observatory, Hong Kong, China ² The Chunese University of Hong Kong, Hong Kong, China ⁹ Philippine Atmospheric, Geophysical and Astronomical Services Administration, the Philip	tion function to enhance a selected optical flow computation that takes ade method. This paper details the year everal significant rainstorm nces. The limitations of the current	uture research and gauge the state	
ABSTRACT	ure research areas are also presented.		
The Hong Kong Observatory operates an in-house developed neurostating system, masely "Short ar- of clamses Raintonis in Localized Systems (SWRLS), 'n comport the operation of raintonen andare warming as well as to provide rainful answerst varices for the public and for special user and the system of the system of the system is moved of raintonen to tracking closens that separate the motion of the spinling rain bands from the overall movement iso has been developed. Back-steim guide historical classes in the part to repart results that the same capable of preserving topological cyclones rain bands throuten on a classes developed has the fore- developed and the system of the same capable of preserving topological cyclones rain band truetures and can enhance forecast skills. <i>Kowwork</i> : minful Innexest, quantitative precipitation forecast, thropical cyclone	and severe rs in Hong new radar of tropical		


SWIRLS Nowcast for Weather Forecasters

Guidance on Rainstorm Warnings are provided Half an Hour in Advance, reducing casualties and damages.

No. of **Floods and Landslides** in Hong Kong decreased over the years

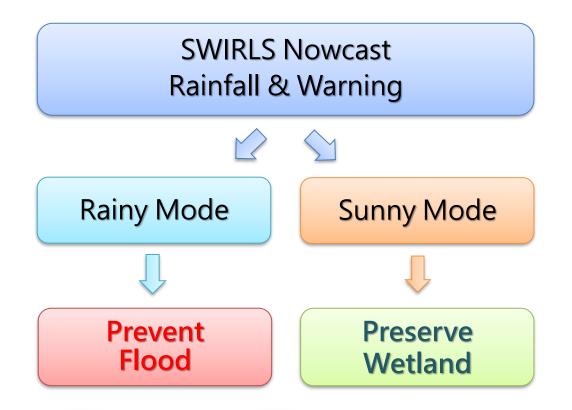
SWIRLS Nowcast for Citizens


active users

Rainfall/Lightning Nowcast On Mobile App

Rainfall/Lighting Nowcast **On Internet Website**

Over 10 billion visits in 2019

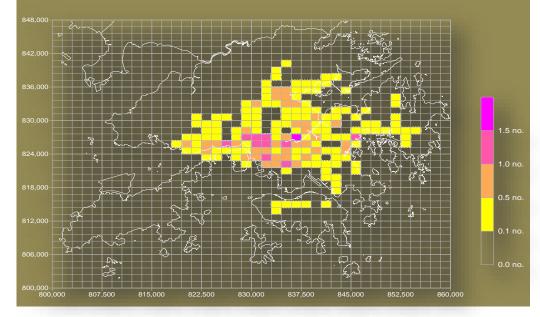

SWIRLS Rainfall Nowcast for Drainage Services Department

Drainage System in Shuen Wan Wetland

Greatly Improves Wetland's Ecology

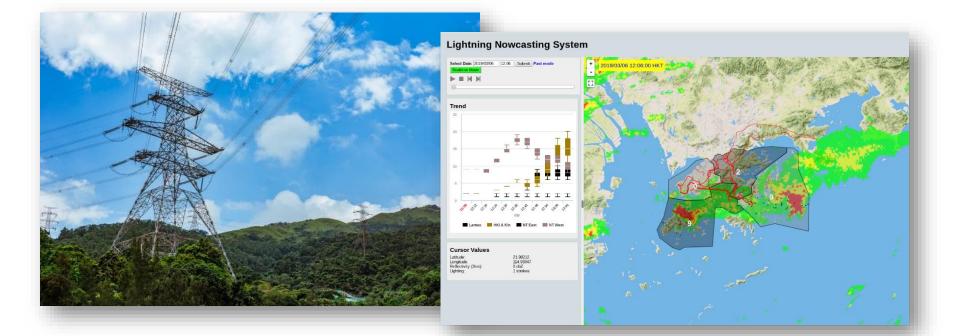
SWIRLS Rainfall Nowcast for Drainage Services Department

Construction Works inside Kai Tak River


After adopting rainfall nowcast, workers can work until 2 hours before the arrival of rainstorms.

Enhances Productivity of Workers

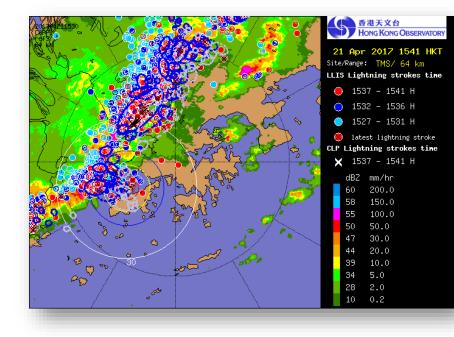
SWIRLS Rainfall Nowcast for Geotechnical Engineering Office (GEO)


Rainfall Nowcast are used for modelling Number and Locations of Landslides

GEO's Landslip Model

Supports Decision on Landslip Warning Enables Mobilization of Staff in Advance

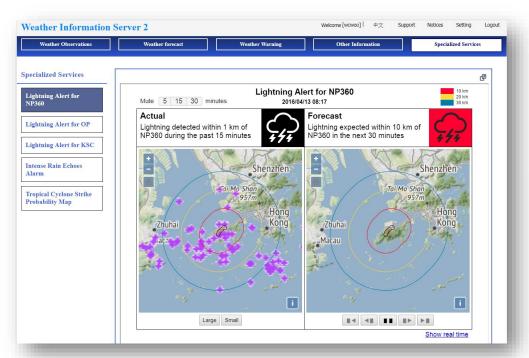
SWIRLS Lightning Alerts for Power Company



Power Supply Reliability: 99.999%

Supports Decisions on Mobilization Enables Rapid Resumption of Power

SWIRLS Lightning Alerts for Hong Kong International Airport



HONG KONG

Minimizes Risk of Lightning Strikes **Of Ground Staff in the Airport**

SWIRLS Lightning Alerts for Theme Park, Golf Course & Cable Car

Enable Timely Suspension of Services Before Thunderstorms and Early Resumption After

Technology Transfer for Overseas Weather Services

Easy to Install, Configure and Use

Community SWIRLS Platform For Developers

Overseas Weather Services

Weather Forecasters

Citizens

Government & Utilities

Community SWIRLS Nowcast System

Transferred to 33 Countries/Regions

Asia Pacific

Australia Macao **Bangladesh Malaysia** China Myanmar Fiji Philippines Singapore India Sri Lanka Indonesia Thailand Japan Korea Vietnam Laos

Appreciation letters from ...

Malaysia

Dear Mr. Shun Chi-Ming

SWIRLS RADAR NOWCASTING SOFTWARE

I wish to refer to the above and would like to take this opportunity to express my sincere appreciation and gratitude to the Hong Kong Observatory (HKO) for granting the Malaysian Meteorological Department (MetMalaysia) permission to operationalise the SWIRLS (Short-range Warning of Intense Rainstorms in Localized Systems) software

... express my sincere appreciation and gratitude to the Hong Kong Observatory ...

erationalized nationwide in radar stations. Nowcasting without guidance from the

Director-General of Malaysian Meteorological Department

> invaluable as they enabled our officers to enhance their skills and knowledge in severe weather nowcasting and forecasting.

India डॉ. के. जे. रमेश भारत सरकार पृथ्वी विज्ञान मंत्रालय मौसम विज्ञान विभाग के महानिदेश मारत मौसम विज्ञान विभाग विश्व मौसम विज्ञान संगठन में भारत के स्थाई प्रतिनिधि एवं नौसम भवन लोदी रोड नई दिल्ली — 110003 विश्व मौसम विज्ञान संगठन की कार्यकारी परिषद के सदस्य Government of India Dr. K. J. Ramesh Ministry of Earth Sciences India Meteorological Department Director General of Meteorology & Mausam Bhawan, Lodi Road Permanent Representative of India with W.M.O. New Delhi - 110003 and Member Executive Council Of W.M.O. 18th Oct. 2017 Dear Dr. Woo. We thank you and your organization for helping India Meteorological Department to implement the SWIRLS software at IMD for use in operational nowcasting. The terms of usage as mentioned in your mail, are as below: 1. The SWIRLS software (or "Soft We thank you and your a third party: 2. The Software or its derived proorganization for helping India 3. Due acknowledgement to the results made or derived from the Meteorological Department ... These terms of usage are accepta Director-General of during the operational application fruitful association between the tv Indian Meteorological Department

Dr. WOO Wang-chun SWIRLS software Development Team Hong Kong Observatory 134A Nathan Rd, Tsim Sha Tsui, Hong Kong

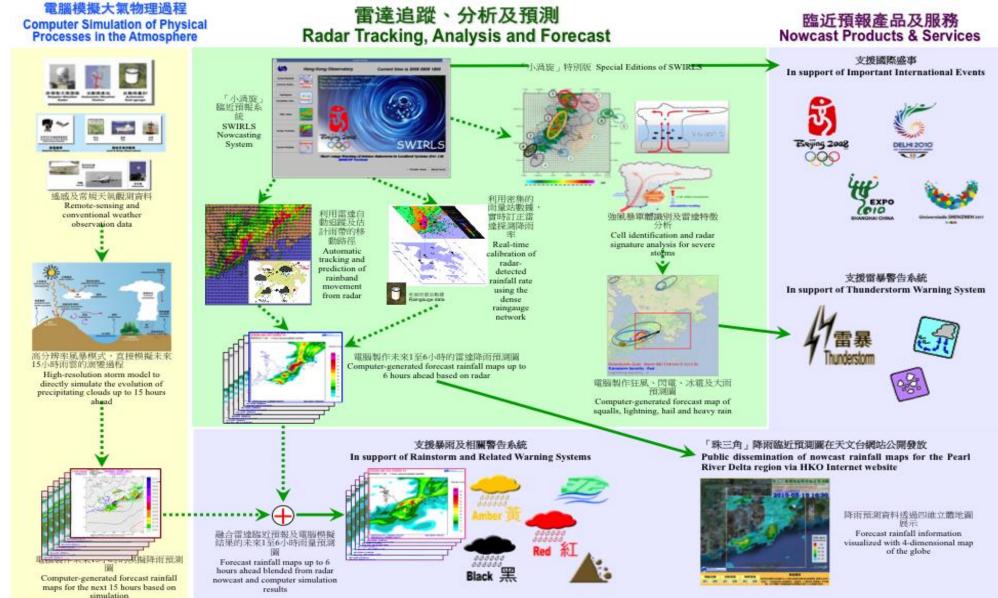
Phone : 91-11-24611842, Fax: 91-11-24611792, Resl.: 91-11-24657374 E-mail: kjramesh2607@gmail.com / dgmmet@gmail.com / kj.ramesh@nic.in / kj.ramesh@imd.gov.in Designated as Regional Centre for Nowcasting by <u>World Meteorological Organization (WMO)</u>, a United Nations Agency

WMO is an UN Organization, like WTO, WHO etc. In Recognition of our Outstanding Technology and Contributions, HKO has been designated by UN/WMO as a Regional Centre for Nowcasting. Opening inaugurated by HKO's Director (left) and Secretary-General of UN/WMO (right)

Awards

The Associat	tion of Consulting Engineers of Hong Kong 香港顧問工程節協會
1	Clini certificate in conorded to HONG KONG OBSERVATORY For the project
	AND REHABILITATION OF KAI TAK RIYER FROM P GE ROAD TO PRINCE EDWARD ROAD EAST
ACEH	IK ANNUAL AWARD
	Los
Date: 201 of Neuroper 2017	Ir. Prance K

Annual Award of The Association of Consulting Engineers of Hong Kong 2017


Winner Awards at the 19th Asia Pacific Information and Communications Technology Alliance (APICTA) Awards Public Sector & Government category – Gov't & Citizen Services Technology category – Artificial Intelligence Ha Long Bay, Nov 2019

SWIRLS IN HONG KONG

SWIRLS – HKO Rainstorm Nowcasting System

Warning Signals on Rainstorm, Flooding and Landslide

Amber Rainstorm Signal

Heavy rain has fallen or is expected to fall generally over Hong Kong, <u>exceeding 30 mm in an hour</u>, and is likely to continue.

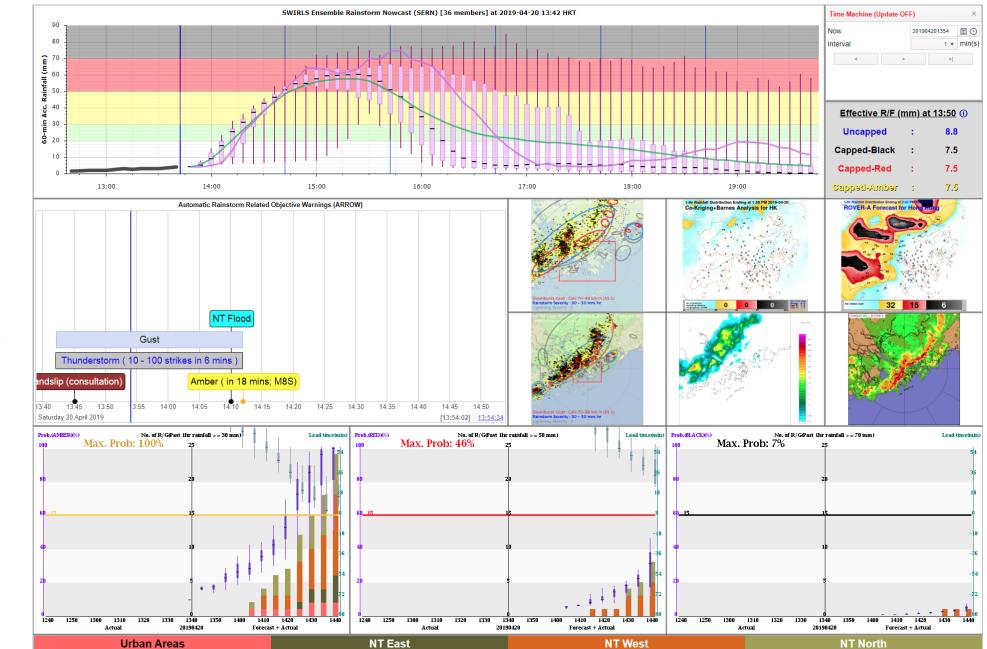
Thunderstorm Warning

Red Rainstorm Signal

Heavy rain has fallen or is expected to fall generally over Hong Kong, <u>exceeding</u> <u>50 mm in an hour</u>, and is likely to continue.

Landslip Warning

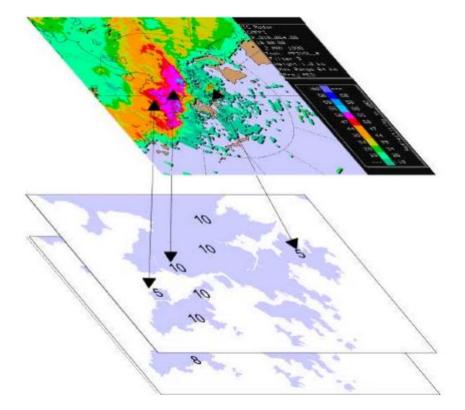
Black Rainstorm Signal Heavy rain has fallen or is expected to fall generally over Hong Kong, <u>exceeding 70 mm in an hour</u>, and is likely to continue.



Special Announcement on Flooding in the northern New Territories

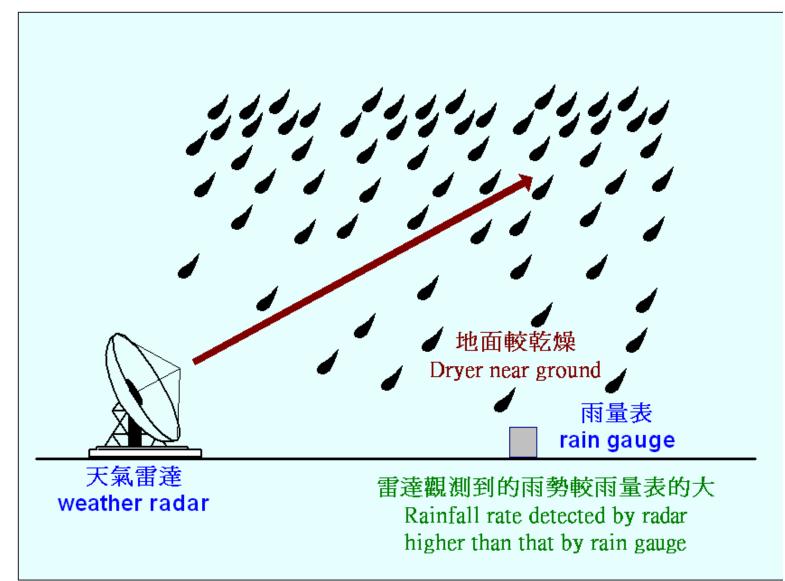
SWIRLS' Core

An integrated support on decision making (alerts, warning, consultation with government departments) during heavy rain situation

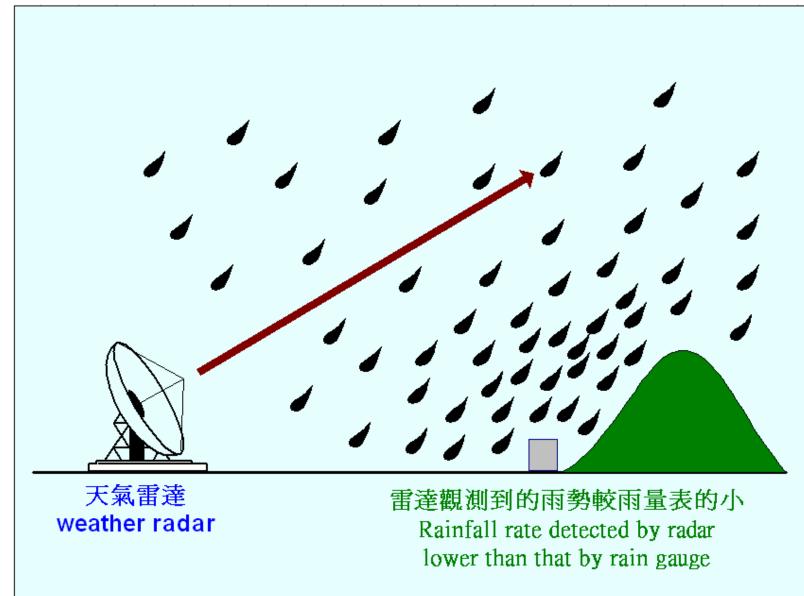

QPE – Quantitative Precipitation Estimation

- Schematic diagram showing the calibration of radar reflectivity using real-time raingauge measurement.
- Z-R relation for converting reflectivity to rainfall rate

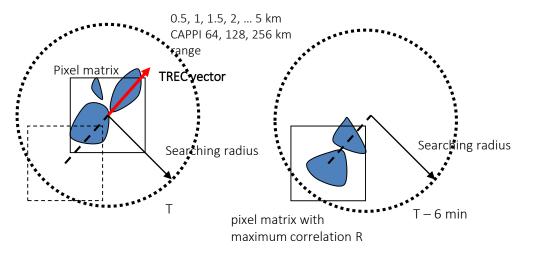
 $Z = aR^b$


 $dBZ_i = b dBG_i + 10log(a)$

• Gridded rainfall analysis computed by Barnes analysis or co-kriging algorithm


Limitations of Radar Measurements (1)

巷天文台


Limitations of Radar Measurements (1)

Radar Nowcasting – Echo Tracking

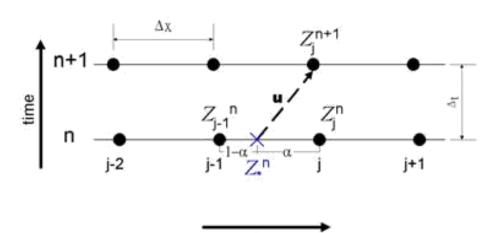
• Maximum Correlation (TREC)

where Z_1 and Z_2 are the reflectivity at T+O and T+6min respectively

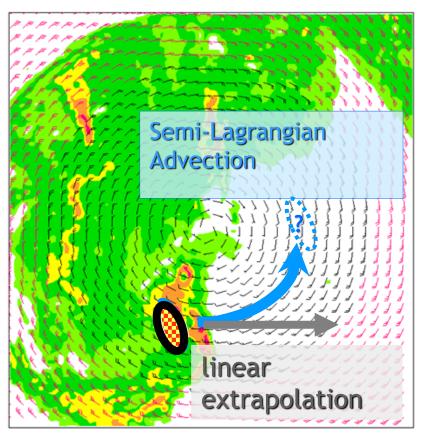
$$\mathbf{R} = \frac{\sum_{k} Z_{1}(k) \times Z_{2}(k) - \frac{1}{N} \sum_{k} Z_{1}(k) \sum_{k} Z_{2}(k)}{\left[\left(\sum_{k} Z_{1}^{2}(k) - N \overline{Z_{1}}^{2} \right) \times \left(\sum_{k} Z_{2}^{2}(k) - N \overline{Z_{2}}^{2} \right) \right]^{1/2}}$$

• Optical Flow

ROVER – Real-time Optical-flow by Variational method for Echoes of Radar


Given I(x,y,t) the image brightness at point (x,y) at time t and the brightness is constant when pattern moves, the echo motion components u(x,y) and v(x,y) can be retrieved via minimization of the cost function:

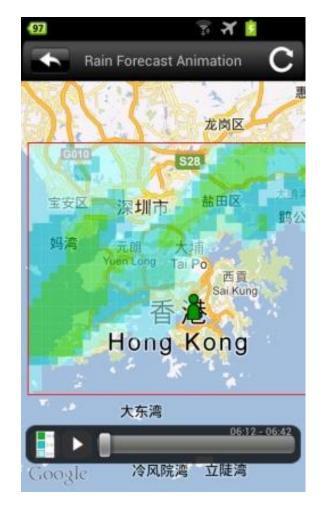
$$J = \iint \left[\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} + v \frac{\partial I}{\partial y} \right]^2 dx dy$$



QPF - Forecast by Extrapolation

- Semi-Lagrangian Advection
 - Robert scheme (3 iterations to find origin point)
 - Bi-cubic interpolation
 - Flux limiter (local max, min constraint)
 - One-way nesting

$$\frac{dZ}{dt} = \frac{\partial Z}{\partial t} + \mathbf{u} \frac{\partial Z}{\partial x} = 0$$

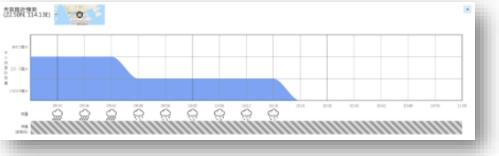


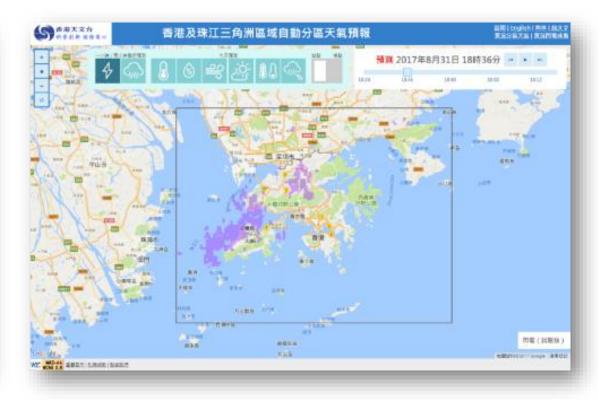
QPF (Quantitative Precipitation Forecast)

 \bigcirc

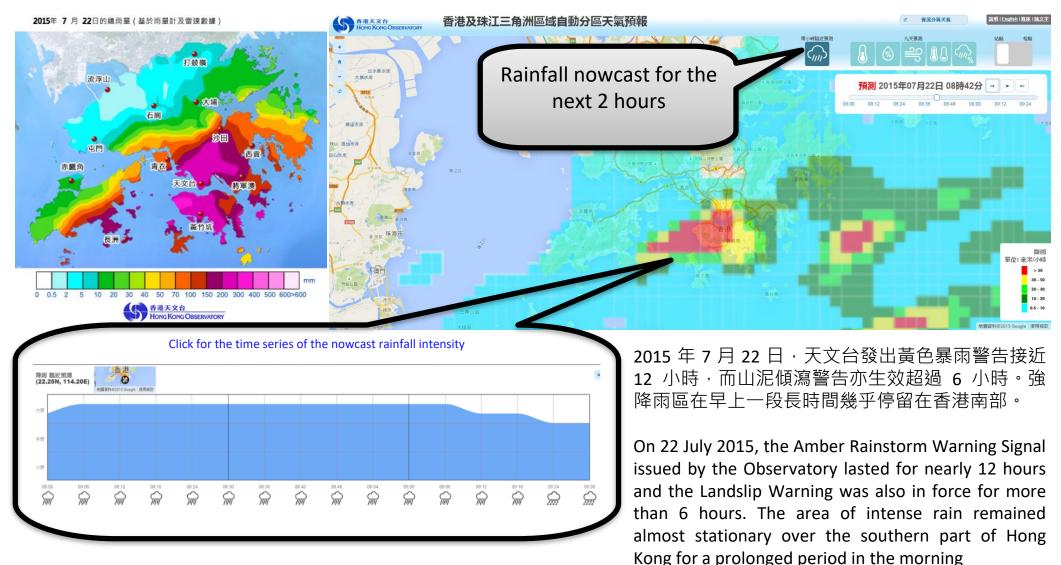
HKO Automatic Regional Weather Forecast http://maps.weather.gov.hk/ocf/ Automatic Regional Weather Forecast in Hong Kong & Pearl River Delta Region Two-hour rainfall nowcasts Forecast 22:18 22 Feb 2015 Click grid to show 22.24, 114.57 rainfall nowcasts time series for the location > 50 50 - 50 **Rainfall Nowcast** Kong (22.24N, 114.57E) Moderat Ligt 0 0 0 0 0 0 0 0 \bigcirc 0 0 \bigcirc

"<u>MyObservatory</u>" mobile app on iOS and Android

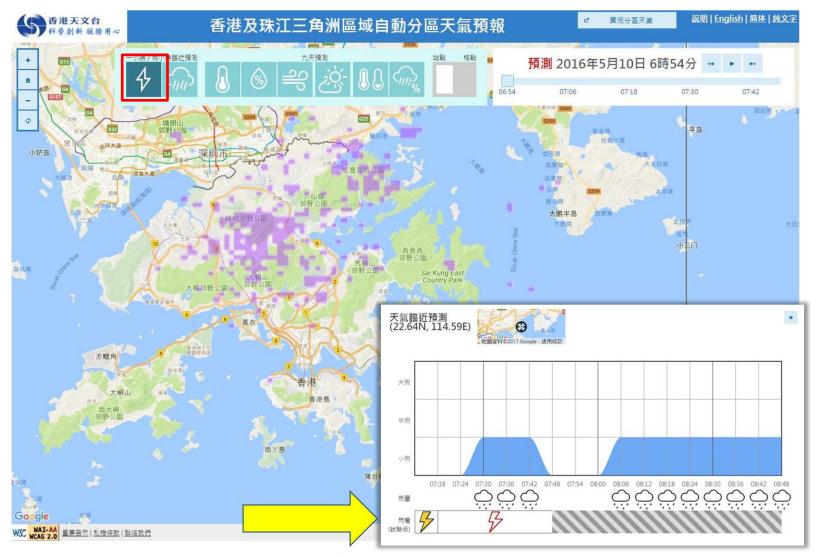



SWIRLS Nowcast Products to Public

Rainfall and Lightning Nowcast



Seamless Integration of Rainfall Nowcast with Automatic Site-specific Weather Forecast Rainfall Nowcast in Hong Kong and Pearl River Delta Region in the next 2 hours

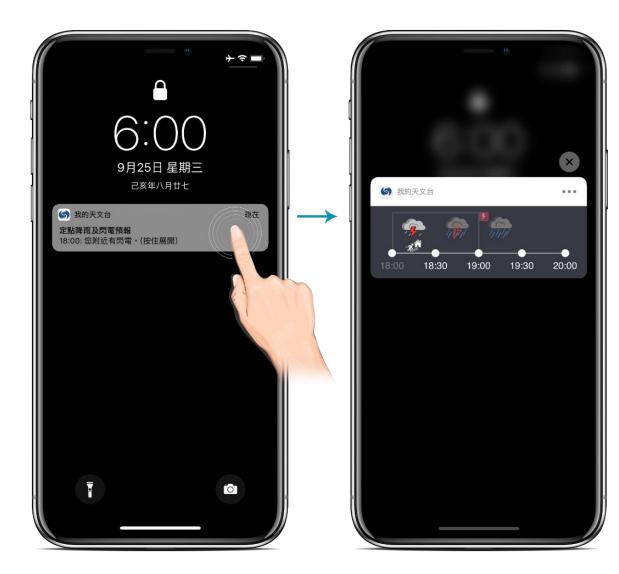

香港天文台 HONG KONG OBSERVATORY

Lightning Nowcast in Automatic Regional Weather Forecast (ARWF) website

http://maps.weather.gov.hk/ocf/

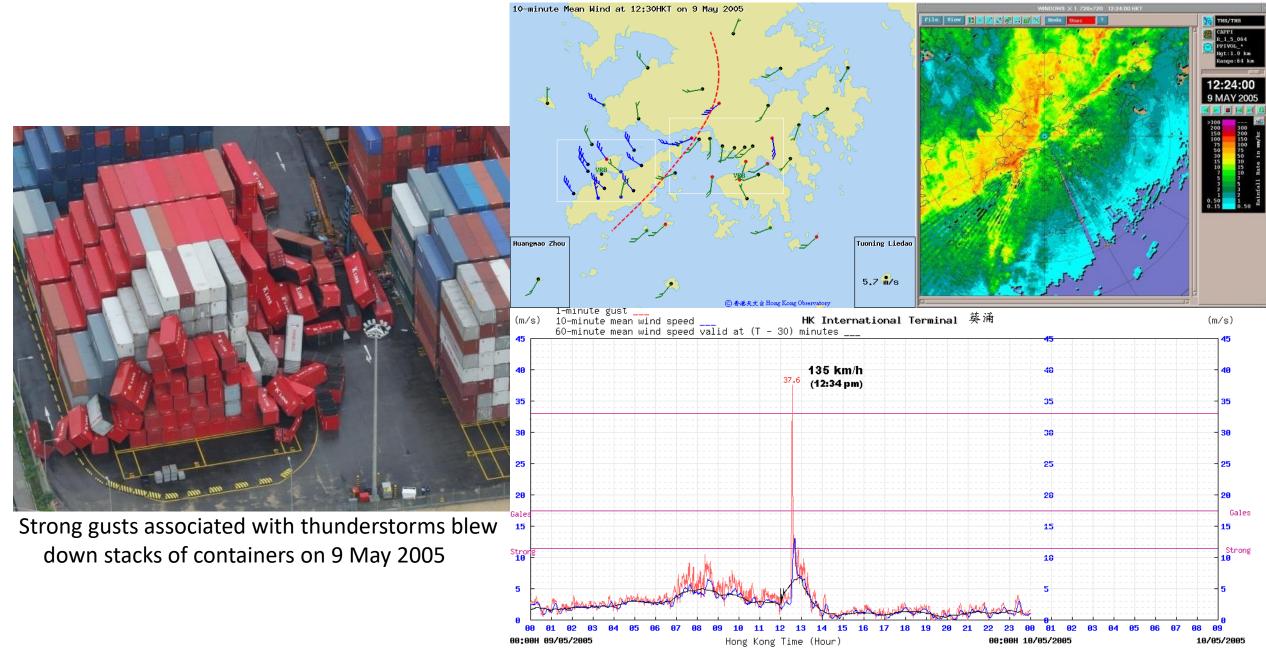
Lightning within 10 km in the first 30-minute period

Lightning within 15 km in the first 30-minute period

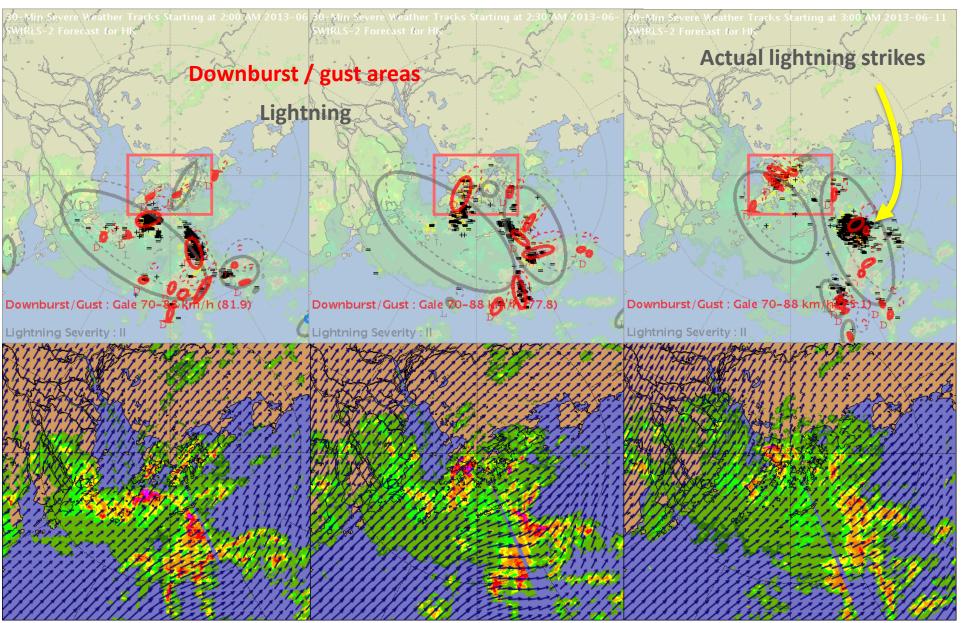

Lightning within 10 km in the second 30-minute period

Lightning within 15 km in the second 30-minute period

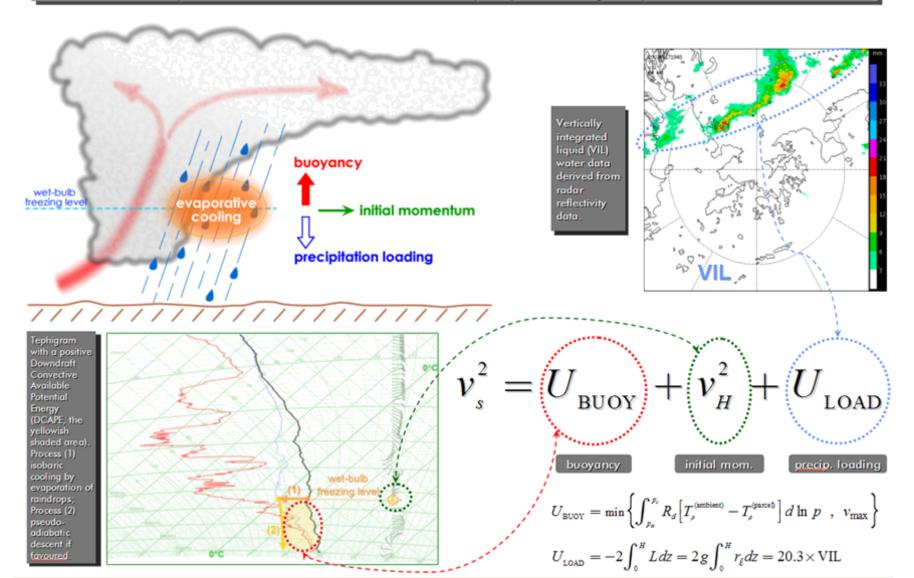
Location-specific Rainfall and Lightning Nowcasts

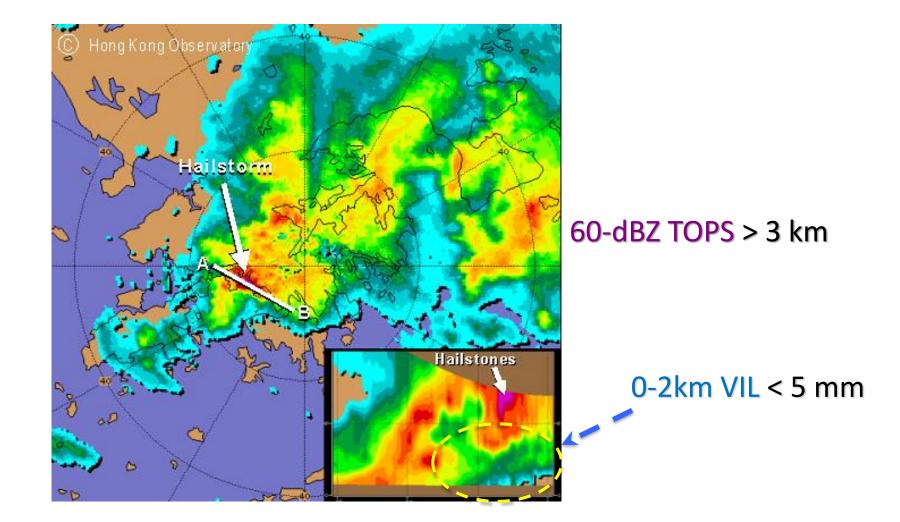


Severe Weather Nowcast in SWIRLS

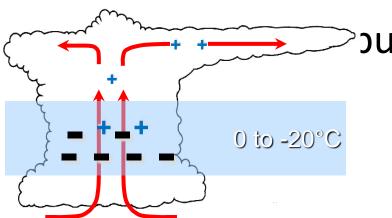


⑥ 香港天文 含 Hong Kong Observatory


Severe Weather Nowcast


Conceptual Model of Downburst

Conceptual model of convective downdraft due to raindrops evaporative cooling of air parcel in the rain shaft

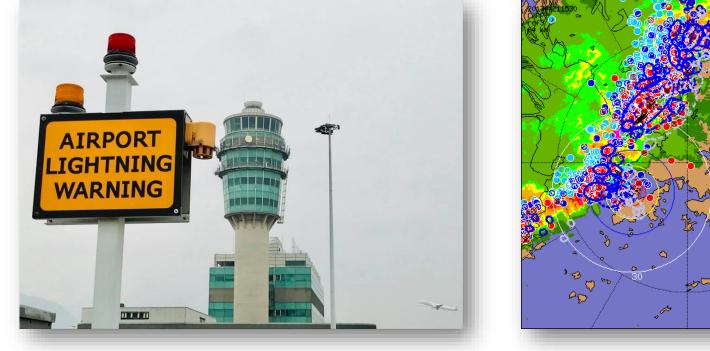

Hail

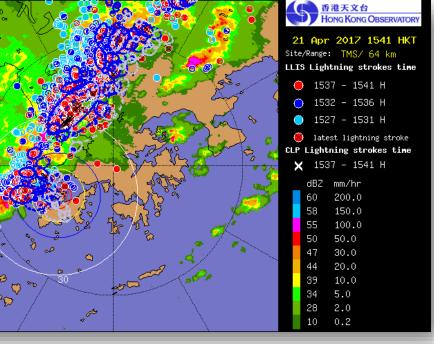
Lightning Nowcast

+/- ve charges carried by ice and graupel respectively

(a) charge separated vertically by updraft(b) physics reflected in radar observations:

	Table II – S	Summary of the conceptual model for lightning initiation.											
1	lsothermal	(i) S	nallow	Cu	(ii) To	wering	Cu	(iii) ı	mature	Сb	(iv) de	caying	Cb
-	Layers	D	Н	E	D	Н	E	D	Н	E	D	Н	E
	below-40°C							ſ	*	ρ	î	*	ρ
	-20 to -40°C				î	*	ρ	Î	*	ρ	Î	*	
	-10 to -20°C	ſ	*		ا≎	*	σ	₽	*	σ		*	
	0 to -10°C	Î	٥		\uparrow	* 0		€	* 🛆 💪	Jσ		*	
	above 0°C	Î	۵		\uparrow	\bigcirc		€	\triangle	σ	Ų	\triangle	
	near surface	$\rightarrow \leftarrow$			$\rightarrow \leftarrow$	$\dot{\nabla}$		$\leftarrow \rightarrow$	₫	R	$\leftarrow \rightarrow$	\bigtriangledown	K


Note : Headings D, H and E stand for vertical dynamics, hydrometeors and electric charges respectively. Other symbols are explained in the main text of Section 2.


TOP, VIL, REF_{0°C}, REF_{-10°C}, REF_{-20°C}

SWIRLS Lightning Alerts for Hong Kong International Airport

Minimizes Risk of Lightning Strikes to ground staff in the Airport

Lightning Alert and Nowcasting Services for Public **Facilities**

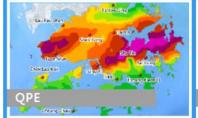
Weather Information S	erver 2	Welcome [wcwoo] 中文 Suppo	ort Notices Setting Logout
Weather Observations	Weather forecast Weather	Warning Other Information	Specialized Services
Specialized Services			ß
Lightning Alert for NP360	Li Mute 5 15 30 minutes	ightning Alert for NP360 2016/04/13 08:17	10 km 20 km 30 km
Lightning Alert for OP	Actual Lightning detected within 1 km of NP360 during the past 15 minutes	Forecast Lightning expected within 10 km NP360 in the next 30 minutes	n of
Lightning Alert for KSC			
Intense Rain Echoes Alarm		enzhen	Shenzhen
Tropical Cyclone Strike Probability Map	ai Mo Shan 957m	Hong Tai Mo S	Shan 57m Hong
	Zhuhai	Kong Zhuhai Macau	Kong
			At 1 in
		and the second s	
	1 M		<u> </u>
	Large Small		
			Show real time

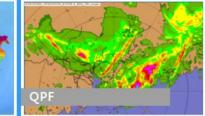
COMMUNITY SWIRLS (COM-SWIRLS)

Com-SWIRLS

Website: http://swirls.hko.gov.hk

- Capacity building of rainfall nowcasting in NMHSs, promote knowledge exchange and collaboration on research development of rainfall nowcasting techniques
- Com-SWIRLS is developed based on the operational version of SWIRLS, featuring:
 - Quantitative precipitation estimate (QPE), quantitative precipitation forecast (QPF) and graphics utilities to generate rainfall / reflectivity nowcast products
 - Portable code running on common Linux distributions
 - Configurable for implementation in different forecast domains
 - Modular design for easier code changes, and integrate new modules from community users


Home Features Documentations Downloads User Foru


SWIRLS

SWIRLS (Short-range Warning of Intense Rainstorms in Localized Systems) is the operational rainstorm nowcasting system of Hong Kong Observatory (HKO). State-of-the-art techniques are implemented in SWIRLS for analysis and prediction of precipitation and convective weather phenomena in the next few hours. SWIRLS has been in operation in HKO since 1999. SWIRLS was also implemented in various meteorological services or participated in international forecasting projects to support the research and development of rainstorm nowcasting techniques.

The community version of SWIRLS, or com-SWIRLS, is developed to facilitate knowledge exchange and cooperation on development of rainfall nowcasting technique. Com-SWIRLS can be available from this website for use by the National Meteorological and Hydrological Services (NHMSs) upon request. To request or for any enquiry, please send an e-mail to swirls@hko.gov.hk

Copyright © Hong Kong Observatory 2017 | Site Map

Community SWIRLS Overseas

Malaysia

Zhuhai

India

New Com-SWIRLS Collaborative Platform

Community SWIRLS Nowcast System

Users in Asian countries

Australia Macao **Bangladesh Malaysia** China Myanmar Fiji Philippines Singapore India Sri Lanka Indonesia Thailand Japan Korea Vietnam Laos

Highlights of Com-SWIRLS 2.0+

- Continuously Maintained and Updated
- Installable by Conda, Single Command
- Documentation Website with User Examples
- Readable Codes, Reusable Modules
- Version Control with GitLab
- Technical Support & Discussions by GitLab Issues
- Support Various Radar Data Formats
- Various QPE Interpolation Methods
- Numerous Motion Field and Forecast Algorithms
- Verification Metrics

Com-SWIRLS 1.x vs 2.x

	Com-SWIRLS 1.x	Com-SWIRLS 2.x		
Installation	VM	Conda *		
Programming Language	Assorted	Primarily Python, plus C++		
Graphics Libraries	NCL, ImageMagick etc.	Open-source Python lib.		
Grid Size	480x480 Only	Rectangular grid of any size		
Supported Radar Data	1	8		
Motion Field Algorithms	1	5		
Forecast Algorithms	1	5		
QPE Methods	1	14, plus multi-sensor QPE		
Verification Metrics	No	14		
Documentation	Limited	Full Documentations		
Version Control	No	Yes, using GitLab-CE		
Software Testing	At initial development only	Upon any changes		

* VM and Docker available on request

Use of Com-SWIRLS/SwirlsPy

User Script

- Developed by the NMHS, assisted by HKO
- Tailored to the specific situation, e.g. warning criteria, database, infrastructure, of that NMHS

Shared Modules (SwirlsPy)

- Developed by HKO Staff and Contributing Developers
- Shared with all NMHSs
- Regularly Updated
- Backward Compatible Whenever Possible

import os import numpy as np import pandas as pd import xarray as xr import cartopy.feature as cfeature import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm, ListedColormap from pyresample import utils from swirlspy.rad.uf_ph import read_uf_ph from swirlspy.qpe.utils import locate_file, timestamps_ending from swirlspy.qpf import rover from swirlspy.qpf import sla from swirlspy.utils import standardize_attr, FrameType from swirlspy.utils.conversion import to rainfall depth, acc rainfall depth from swirlspy.core.resample import grid_resample plt.switch_backend('agg')

THIS_DIR = os.getcwd()
os.chdir(THIS_DIR)

start_time = pd.Timestamp.now()

Import and Call SwirlsPy Modules

WMO RSMC FOR NOWCASTING

RSMC for Nowcasting

Opening Ceremony on 2 October 2019 inaugurated by DHKO and Professor Petteri Taalas, Secretary-General of WMO on 2 October 2018

Main · News · Press Release · News from Members · Multimedia · Contact us

WMO and Hong Kong Observatory strengthen cooperation

Tags:WMODisaster risk reductionForecastTropical cyclonesCapacitydevelopment

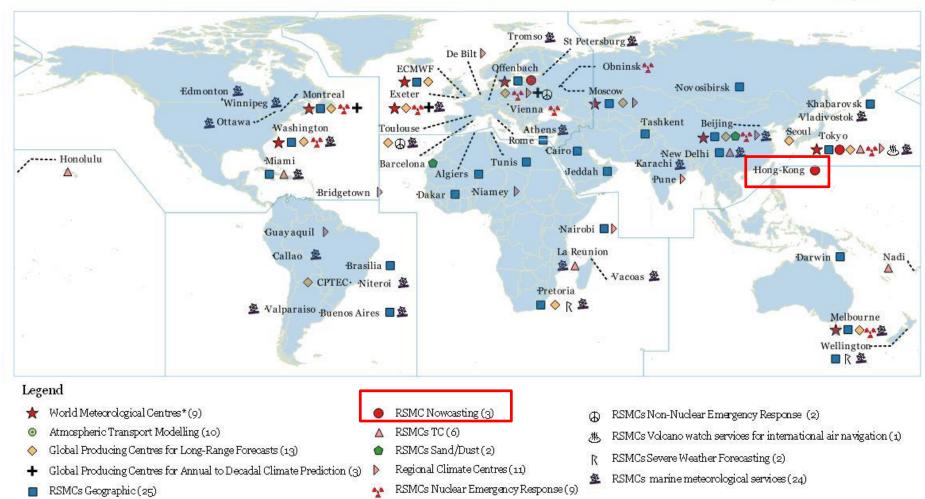
2 Published 2 October 2018

WMO has signed an agreement with the Hong Kong Observatory (HKO) to further strengthen meteorological cooperation.

Under a Memorandum of Understanding signed by HKO Director Shun Chi-ming and WMO Secretary-General Petteri Taalas, HKO will support WMO's initiative in establishing the Global Multi-hazard Alert System (GMAS).

In this connection, the HKO has revamped the Severe Weather Information Centre website (SWIC 2.0) and is also

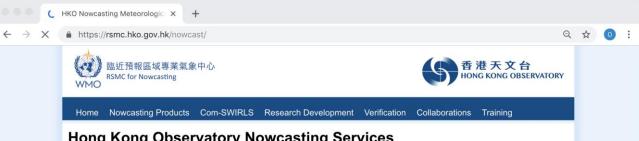
Latest WMO News


Three Ways Forward to Improve Regional Information for Extreme Events: An Early Career Perspective

18 February 2019

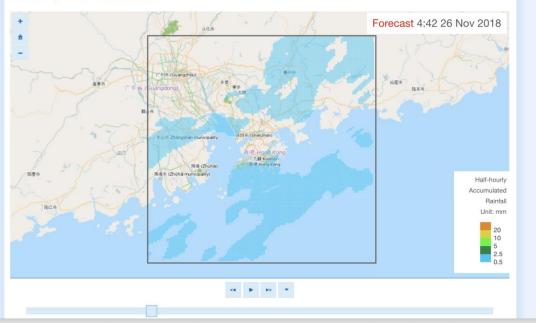
WMO Designated Global Data-processing and Forecasting System Centres

Updated on 24 August 2018


* World Meteorological Centres are also Global Producing Centres for a) Deterministic Numerical Weather Prediction, b) Ensemble Numerical Weather Prediction, and c) Long-Range Forecasts.

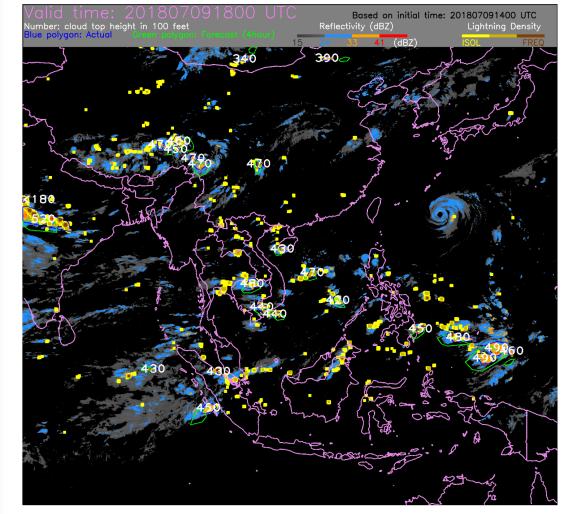
DESIGNATIONS USED

The depiction and use of boundaries, geographic names and related data shown on maps and included in lists, tables, documents, and databases on this web site are not warranted to be error free nor do they necessarily imply official endorsement or acceptance by the WMO.


WMO RSMC for Nowcasting

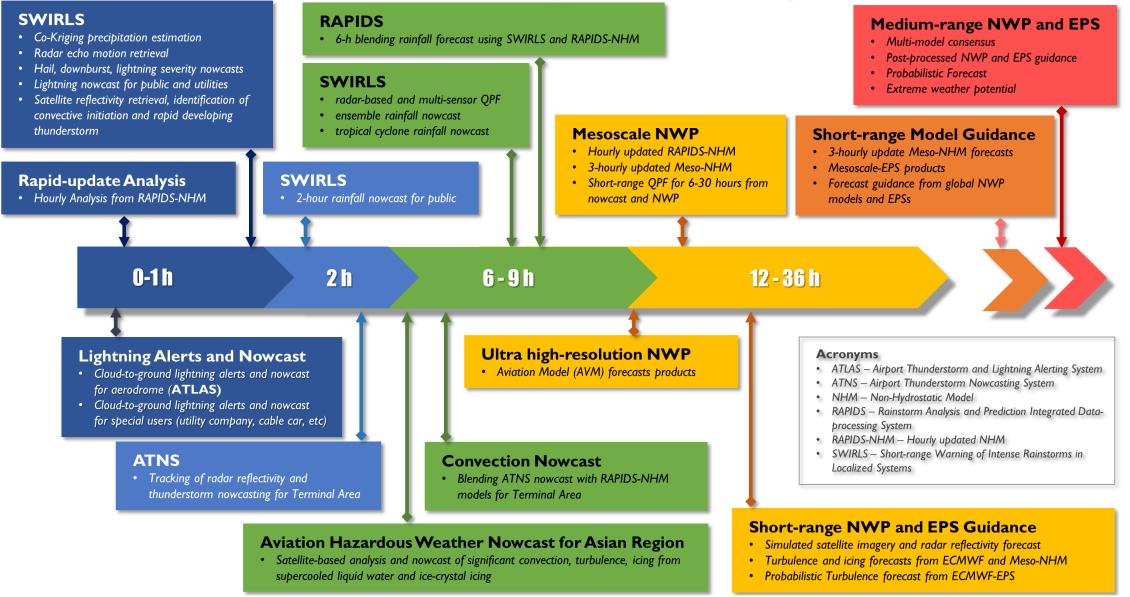
Hong Kong Observatory Nowcasting Services

The Hong Kong Observatory (HKO) has been operating its nowcasting services since 1999. In this connection, HKO has developed a suite of nowcasting systems, including the "Short-range Warning of Intense Rainstorms in Localized Systems" (SWIRLS), to aid rainstorm warning operation as well as high-impact weather forecasting for the public and the aviation community. HKO's nowcasting system has been put to use in various WMO Forecast Demonstration Projects and was demonstrated to be among the best performers. In recent years, HKO develops a community version of its nowcasting system (Com-SWIRLS) to promote knowledge exchange in radar nowcasting techniques and for wider application of nowcasting system. HKO is ready to provide nowcasting services to international users in accordance with the standard and requirements for Regional Specialized Meteorological Centre (RSMC) for nowcasting as described in the WMO Manual on the Global Data-Processing and Forecasting System (GDPFS) (WMO-No. 485).


Location-specific Rainfall Nowcast

Website: https://rsmc.hko.gov.hk/nowcast/

RSMC Hong Kong (since WMO EC-70 in June 2018)


Significant Convection Nowcast over East Asia

Significant convection nowcast at the fourth hour (in UTC) using retrieved reflectivity (blue ≥24 dBZ, orange ≥33 dBZ and red ≥41 dBZ) from Himawari-8 data and updated every 10 minutes. Lightning counts are marked in yellow (sparse) to brown (dense) with green polygons on areas with high reflectivity or dense lightning.

Seamless Nowcast To Medium-range Forecast for High-Impact Weather

Verifications

Heidke Skill Score of I-h nowcast of different thresholds

https://rsmc.hko.gov.hk/nowcast/verificationBenchmark.html

Significant Convection

Forecast time POD FAR

CSI

0.945 0.116 0.841

0.893 0.114 0.801

0.837 0.117 0.754

0.788 0.120 0.711

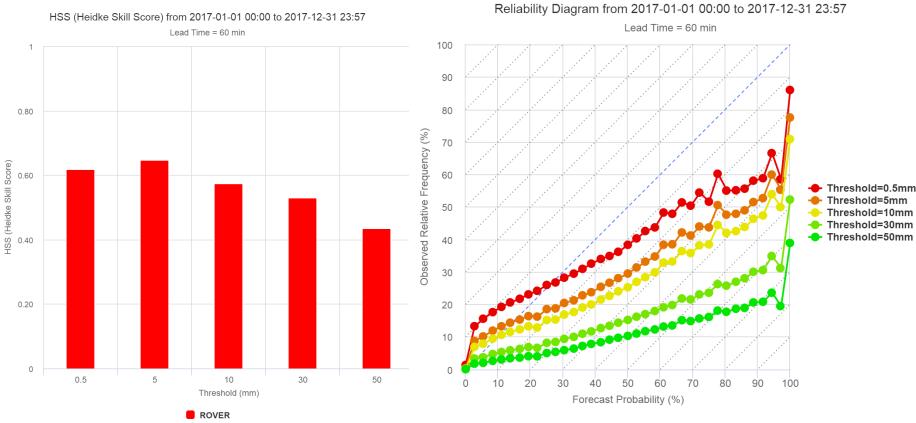
0.747 0.124 0.676

0.712 0.128 0.645

Nowcast (2018)

 $0-1^{st}$ hr

 $0-2^{nd}$ hr


 $0-3^{rd}$ hr

 $0-4^{\text{th}}$ hr

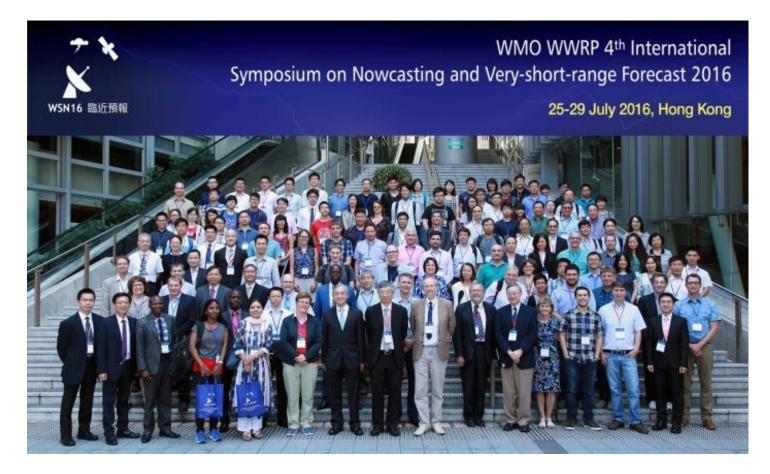
 $0-5^{\text{th}}$ hr

 $0-6^{\text{th}}$ hr

Reliability Diagram

X: All Missing, M: >20% Missing, U: Undefined (divided by zero), 0: Zero

Technology Transfer for Capacity Building on Nowcasting



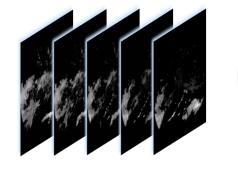
Presentation (link) in

WMO Symposium on Nowcasting and Very-short-range Forecast 2016 (WSN16) in Hong Kong

LATEST DEVELOPMENTS

Deep Learning Nowcast

Deep Learning Nowcast in SWIRLS

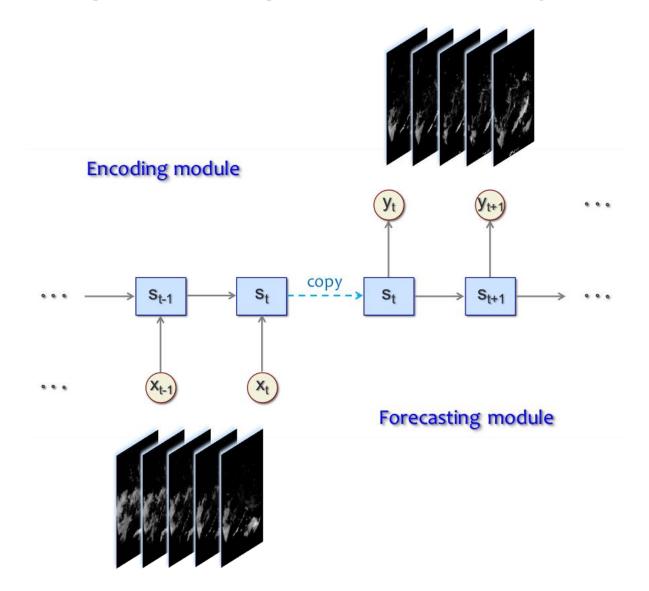

• A Brief History


Year	Event
2014	Initiated collaboration with HKUST
2015	ConvLSTM developed, outperforming ROVER for rain/no-rain (0.5 mm/h), resolution limited to 100x100 only
2016	Model enhancement and adaptation
2017	TrajGRU developed and benchmarked, outperforming ROVER for 30mm/h support arbitrary resolution
2018	Commence operational trial of TrajGRU

• Predicting evolution of weather radar imagery

Input sequence: observed radar maps up to current time step

Output sequence: predicted radar maps for future time steps

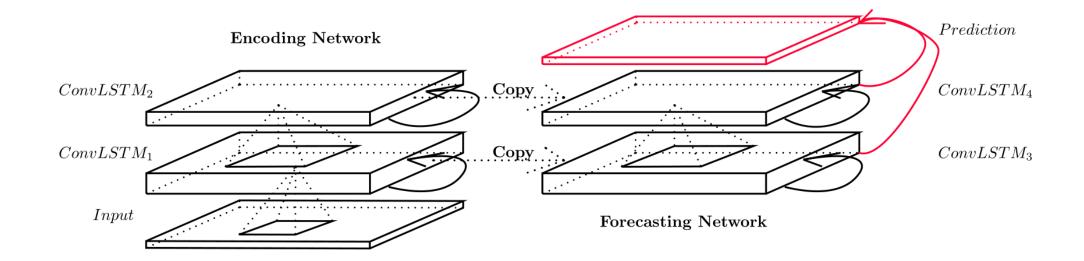


Mathematically to maximize posterior pdf of echo sequence across K time levels based on previous J time levels of observations

 $\hat{\mathcal{X}}_{t+1}, \dots, \hat{\mathcal{X}}_{t+K} = \underset{\mathcal{X}_{t+1}, \dots, \mathcal{X}_{t+K}}{\operatorname{arg\,max}} p(\mathcal{X}_{t+1}, \dots, \mathcal{X}_{t+K} \mid \hat{\mathcal{X}}_{t-J+1}, \hat{\mathcal{X}}_{t-J+2}, \dots, \hat{\mathcal{X}}_{t})$

Spatiotemporal encoding-forecasting model

- Convolutional Long Short Term Memory (ConvLSTM) model
 - X. Shi, Z. Chen, H. Wang, D.Y. Yeung, <u>W.K. Wong</u>, and W.C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. NIPS 2015.


Link: https://arxiv.org/abs/1506.04214

- Two key components:
 - Convolutional layers
 - Long short-term memory (LSTM) cells in recurrent neural network (RNN) model

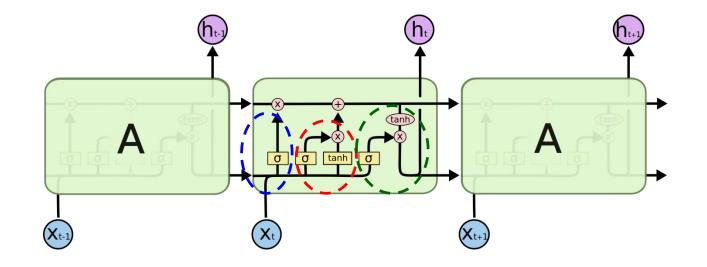
Encoding and Forecasting Networks in ConvLSTM

- Last states and cell outputs of encoding network become initial states and cell outputs of forecasting network
- **Encoding network** compresses the input sequence into a hidden state tensor
- Forecasting network unfolds the hidden state tensor to make prediction

Governing Equations in ConvLSTM

input gate forget gate Cell outputs output gate

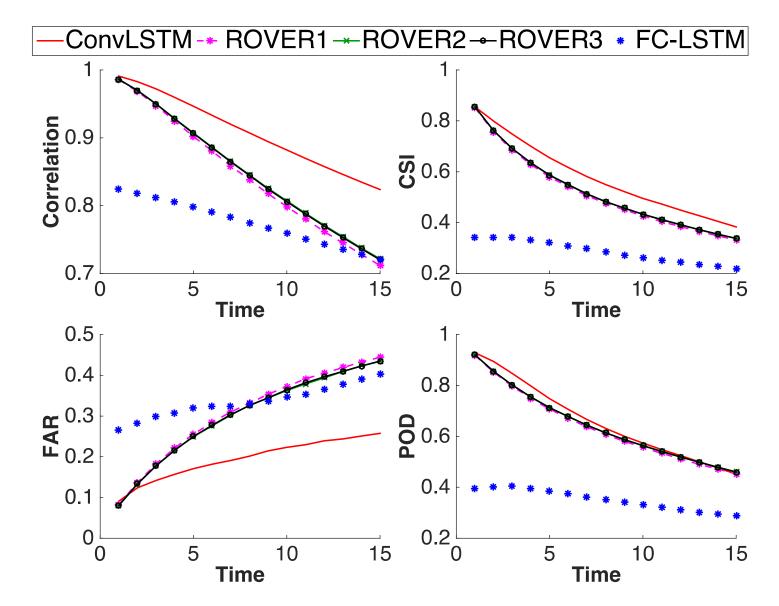
Hidden states


$$i_{t} = \sigma(W_{xi} * \mathcal{X}_{t} + W_{hi} * \mathcal{H}_{t-1} + W_{ci} \circ \mathcal{C}_{t-1} + b_{i})$$

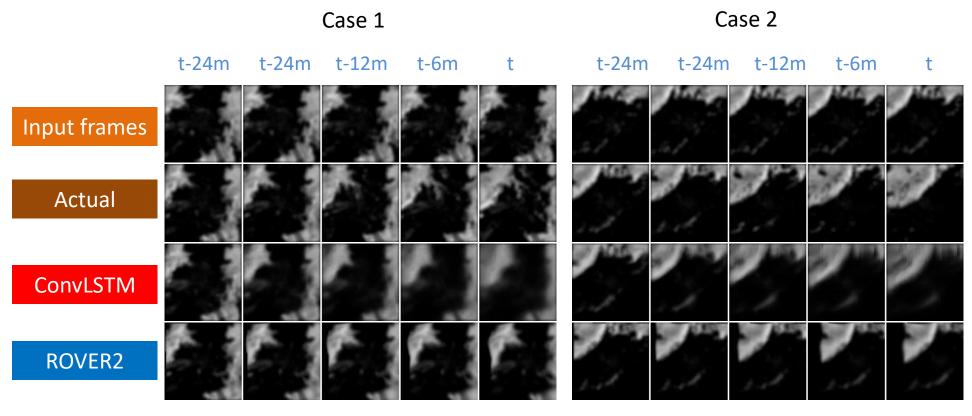
$$f_{t} = \sigma(W_{xf} * \mathcal{X}_{t} + W_{hf} * \mathcal{H}_{t-1} + W_{cf} \circ \mathcal{C}_{t-1} + b_{f})$$

$$\mathcal{C}_{t} = f_{t} \circ \mathcal{C}_{t-1} + i_{t} \circ \tanh(W_{xc} * \mathcal{X}_{t} + W_{hc} * \mathcal{H}_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo} * \mathcal{X}_{t} + W_{ho} * \mathcal{H}_{t-1} + W_{co} \circ \mathcal{C}_{t} + b_{o})$$

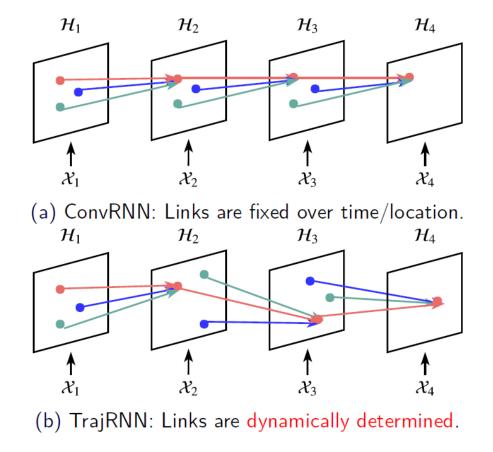

$$\mathcal{H}_{t} = o_{t} \circ \tanh(\mathcal{C}_{t})$$

Inputs


Forecast performance vs. lead time

Two squall line cases

- Radar located at center
- 5 input frames are used and a total of 15 frames (i.e. T+90 min) in forecasts



t+18m t+36m t+54m t+72m t+90m t+18m t+36m t+54m t+72m t+90m

A New Model for Deep Learning in Nowcast

Trajectory Gated Recurrent Unit (TrajGRU)

https://arxiv.org/pdf/1706.03458.pdf

Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung Department of Computer Science and Engineering Hong Kong University of Science and Technology {xshiab,zgaoag,lelausen,hwangaz,dyyeung}@cse.ust.hk

> Wai-kin Wong, Wang-chun Woo Hong Kong Observatory Hong Kong, China {wkwong, wcwoo}@hko.gov.hk

Abstract

With the goal of making high-resolution forecasts of regional rainfall, precipitation nowcasting has become an important and fundamental technology underlying various public services ranging from rainstorm warnings to flight safety. Recently, the Convolutional LSTM (ConvLSTM) model has been shown to outperform traditional optical flow based methods for precipitation nowcasting, suggesting that deep learning models have a huge potential for solving the problem. However, the convolutional recurrence structure in ConvLSTM-based models is location-invariant while natural motion and transformation (e.g., rotation) are location-variant in general. Furthermore, since deep-learning-based precipitation nowcasting is a newly emerging area, clear evaluation protocols have not yet been established. To address these problems, we propose both a new model and a benchmark for precipitation nowcasting. Specifically, we go beyond ConvLSTM and propose the Trajectory GRU (TrajGRU) model that can actively learn the location-variant structure for recurrent connections. Besides, we provide a benchmark that includes a real-world large-scale dataset from the Hong Kong Observatory, a new training loss, and a comprehensive evaluation protocol to facilitate future research and gauge the state of the art.

TrajGRU outperformed operational method and other deep-learning techniques, **in particular for heavy rain r>=30 mm in 1 h**, based on 7-years of radar data

Algorithms			HSS ↑			B-MSE↓	B-MAE↓
Aigonumis	$r \ge 0.5$	$r \geq 2$	$r \ge 5$	$r \ge 10$	$r \ge 30$	D-MSE 4	D-MAE 4
	Offline Se	etting					
Last Frame	0.5207	0.4531	0.3582	0.2512	0.1193	15274	28042
ROVER + Linear	0.6038	0.5473	0.4516	0.3301	0.1762	11651	23437
ROVER + Non-linear	0.5896	0.5436	0.4590	0.3318	0.1576	10945	22857
2D CNN	0.6366	0.5809	0.4851	0.3690	0.1885	7332	18091
3D CNN	0.6334	0.5825	0.4862	0.3734	0.2034	7202	17593
ConvGRU-nobal	0.6756	0.6094	0.4981	0.3286	0.1160	9087	19642
ConvGRU	0.6701	0.6104	0.5163	0.4159	0.2893	5951	15000
TrajGRU	0.6731	0.6126	0.5192	0.4207	0.2996	5816	14675
	Online Se	etting					
2D CNN	0.6365	0.5756	0.4790	0.3744	0.2162	6654	17071
3D CNN	0.6355	0.5736	0.4766	0.3733	0.2220	6690	16903
ConvGRU	0.6712	0.6105	0.5183	0.4226	0.2981	5724	14772
TrajGRU	0.6760	0.6164	0.5253	0.4308	0.3111	5589	14465

ARTIFICIAL INTELLIGENCE

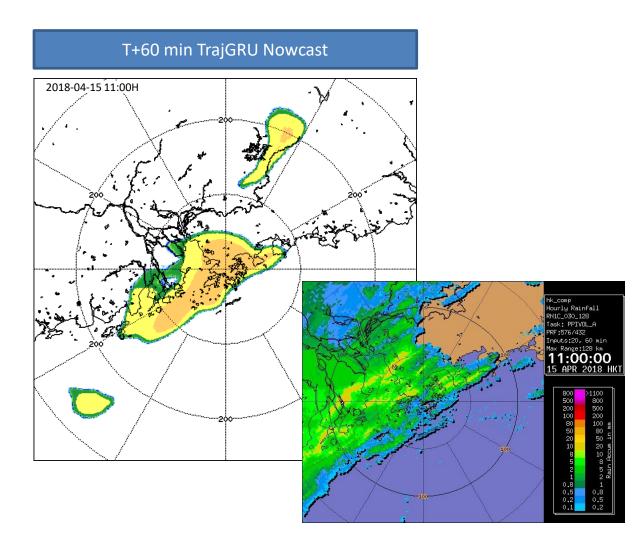
A program that can sense, reason, act, and adapt

MACHINE LEARNING

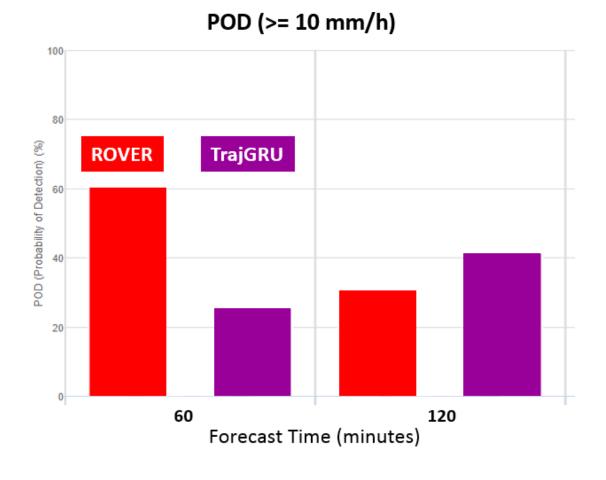
Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

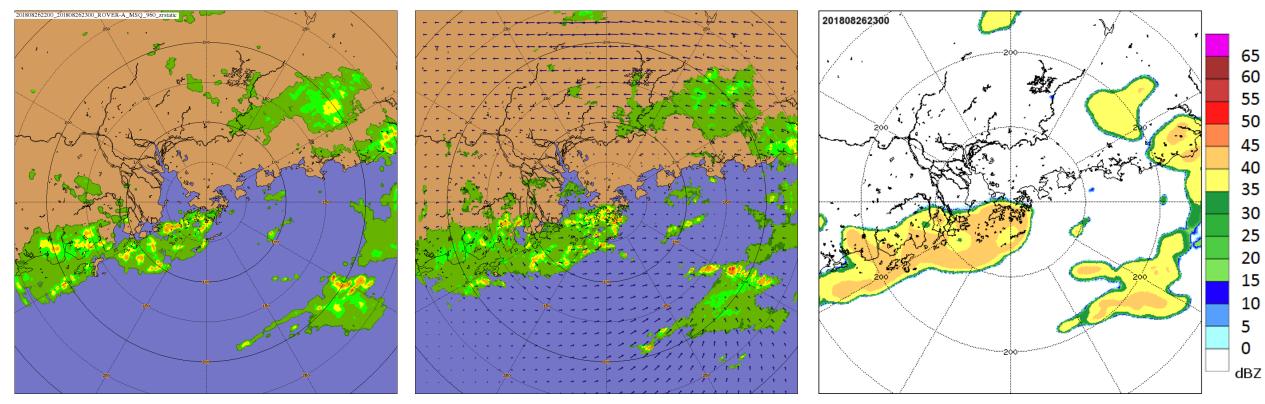


TrajGRU and HKO-7 Benchmark Dataset

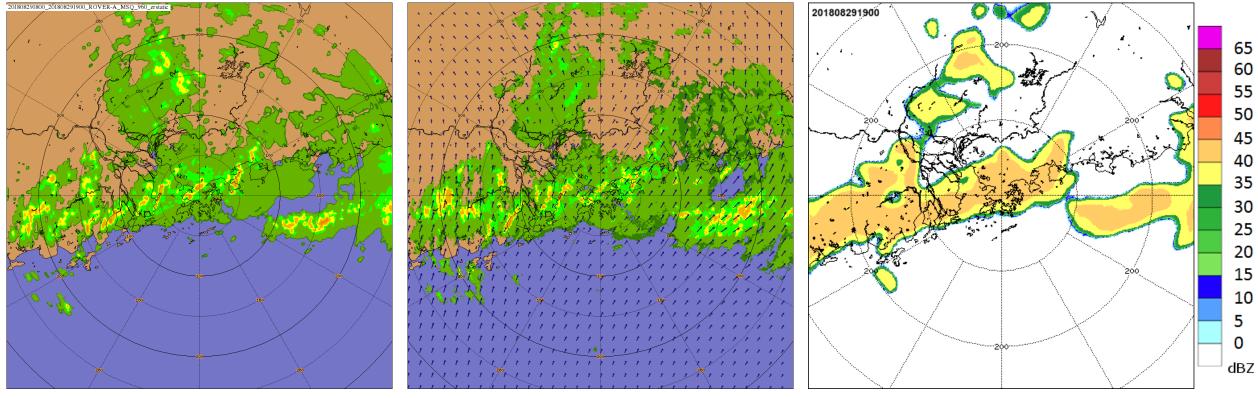

- TrajGRU available to public on GitHub:
 - <u>https://github.com/sxjscience/HKO-7</u>
- The 7-years of HKO radar image archive as benchmark for development of deep learning in nowcasting and other weather application from the above Github repository
 - Available to researchers and weather services subject to agreement to the undertaking

TrajGRU in real-time trial



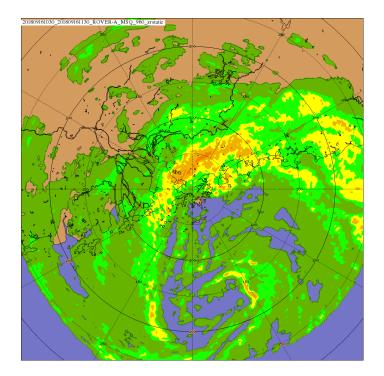

Verification Period: May – Sept 2018

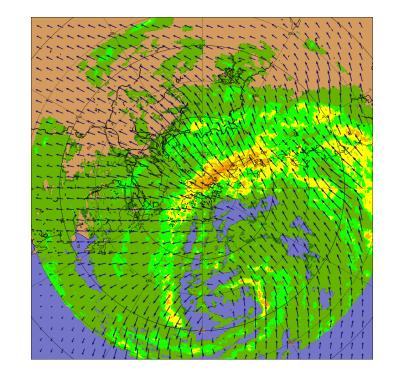
60-min Forecast Reflectivity Based at 2018/08/26 23:00H

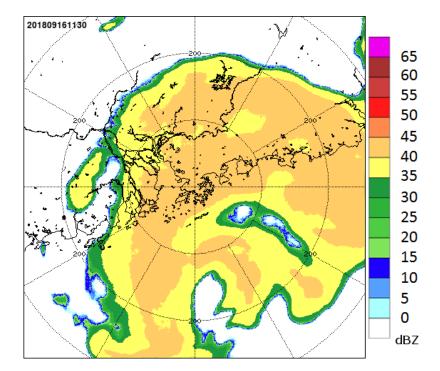

Optical Flow (ROVER)

Actual

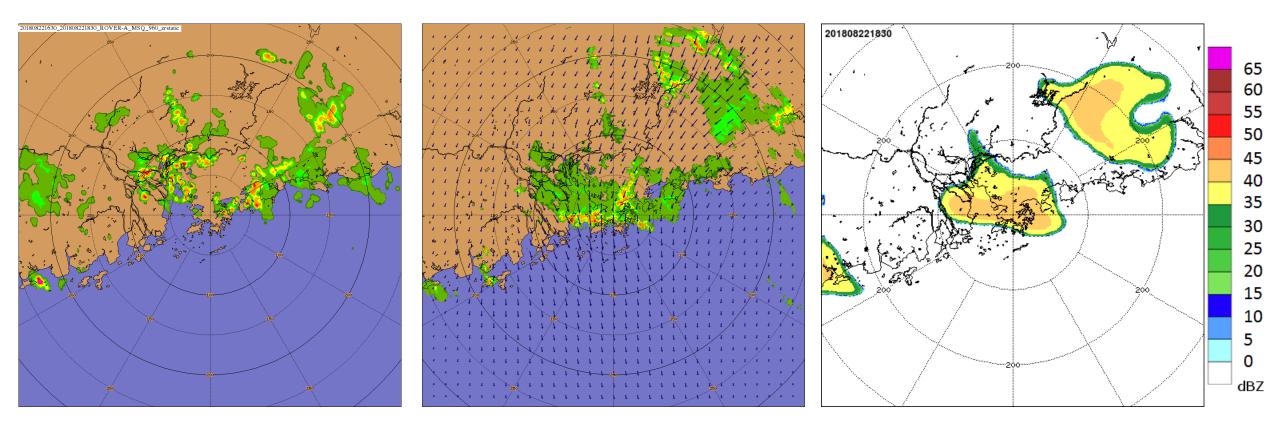
60-min Forecast Reflectivity Based at 2018/08/29 18:00


Optical Flow (ROVER)


Actual



60-min Forecast Reflectivity Based at 2018/09/16 10:30

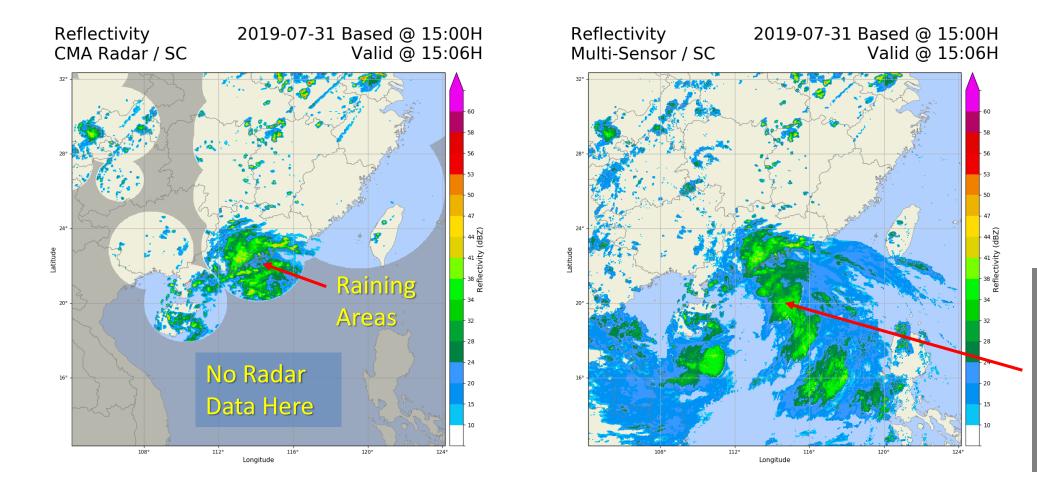

Optical Flow (ROVER)

Actual

I 20-min Forecast Reflectivity Based at 2018/08/22 16:30

Better capture growth and movement of radar echoes

Optical Flow (ROVER)


Actual

Satellite Nowcasting

Retrieval of equivalent radar reflectivity using Himawari-8

Raining Areas Far Away Simulated with Satellites' Data Using Our Neural Network

Spectral Information of Himawari-8 AHI

16 |

6	Bands o	f AHI	(Advanced Himawari Imager	
---	---------	-------	---------------------------	--

MTSAT Channels	Band			Wavelength [µm]	Spatial Resolution	
	1	V1		0.46	1 km	ר ר
	2	V2	Visible	0.51	1 km	
VIS	3	VS		0.64	0.5 km	
	4	N1		0.86	1 km	Ae
	5	N2	Near Infrared	1.6	2 km	Wa
	6	N3		2.3	2 km	Siz
IR4	7	14		3.9	2 km	Fo
IR3 (WV)	8	wv		6.2	2 km	L L
	9	W2		7.0	2 km	- wa
	10	W3		7.3	2 km	J
	11	мі	Infrared	8.6	2 km	SO
	12	03	Infrared	9.6	2 km	03
IR1	13	IR		10.4	2 km	ר ו
	14	L2		11.2	2 km	At
IR2	15	12		12.3	2 km	J
	16	со		13.3	2 km	СО

RGB band composited

Aerosol

Water cloud and Ice cloud Size of the cloud droplet Fog, Hot spot (Forest fire)

Water vapor

SO₂ (Sulfur dioxide) O₃ (Ozone)

Atmospheric Windows

CO₂ (Carbon dioxide)

Extracted from "<u>Introduction to Himawari-8</u>", JMA

6 Bands

Band

Visible

Near Infrared

Infrared

1 V1 2 V2

 3
 VS

 4
 N1

 5
 N2

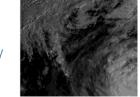
6 N3

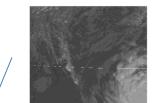
13 IR

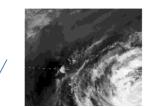
14 L2 15 I2 16 CO

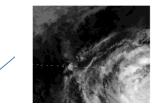
N

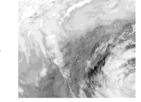
MTSAT


Channels


IR4 IR3 (WV)

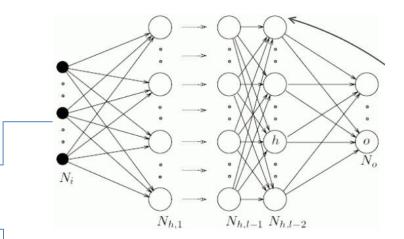

> IR1 IR2

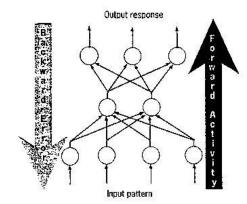

Satellite Nowcasting


X	of AH	(Adva	nced Himawari Ima	ger)	
	Wavelength [µm]	Spatial Resolution	True	e Color Image	
le	0.46 0.51 0.64	1 km 1 km 0.5 km	RGB band composited		
r ed	0.86	1 km 2 km	Aerosol Water cloud and lo		Description
	2.3 3.9 6.2	2 km 2 km 2 km	Size of the cloud d Fog, Hot spot (Fore		VIS0.64. Reflectivity of B03 depends on optical thickness. Thick cloud are displayed in white.
ed	7.0 7.3 8.6 9.6 10.4 11.2	2 km 2 km 2 km 2 km 2 km 2 km	Water vapor SO ₂ (Sulfur dioxide O ₃ (Ozone) Atmospheric Wind	B03 (NI 0.86)	Difference between NIR1.6 and NI 0.86. B04 has high reflectivity for snow/ice covered area and clouds, sea surface looks dark. Reflection characteristic of B05 depends on the phase and size of cloud particles. On difference image, thick clouds with large ice particles are displayed in black (dark), low clouds and land/sea surface look whitish (bright)
	12.3 13.3	2 km 2 km	CO ₂ (Carbon dioxid	B08 (WV6.2) - B10 (W3 7.3)	Difference between WV6.2 and W3 7.3. On difference image, thick clouds with high cloud are displayed in white, low clouds and thin Ci are indistinct.
				B13 (IR10.4)	IR10.4, Atmospheric window band, available for 24 hours. High-level clouds and developed Cbs appear in white, mid-level cloud appear in bright gray.
				B13 (IR10.4) - B15 (I2 12.3)	Difference between IR 10.4 and I2 12.3. Absorption by water vapor of B15 is slightly larger than that of B13. On difference image, thick cloud and low-level cloud contribute to rather grey color, high-level cloud contributes bright color.
				Equinox day diff.	Indication of different Season

Multi-layer perceptron artificial neural network (MLPANN)

Features of MLPANN implemented in HKO: ٠

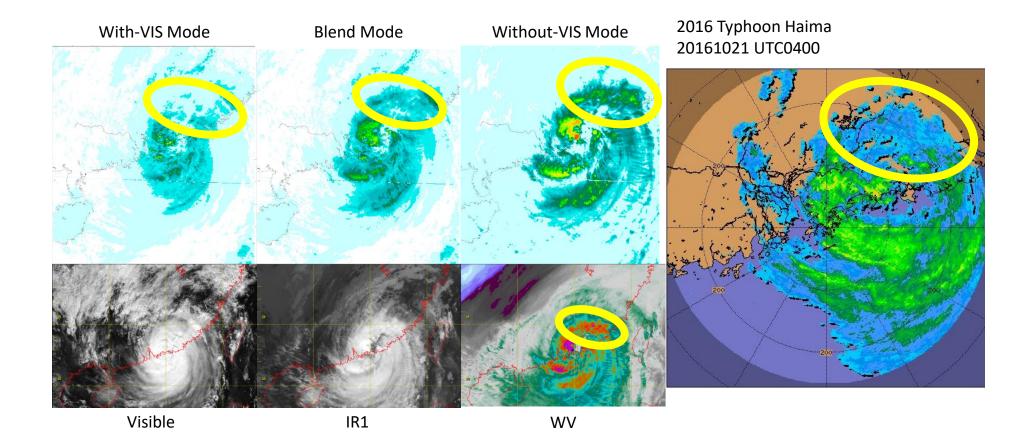

Neural Network Architecture	Deep neural networks	
Training Algorithm	Backpropagation	
Learning Strategy	Supervised learning	
Supervised learn Observations (inp		


Observations (outputs)

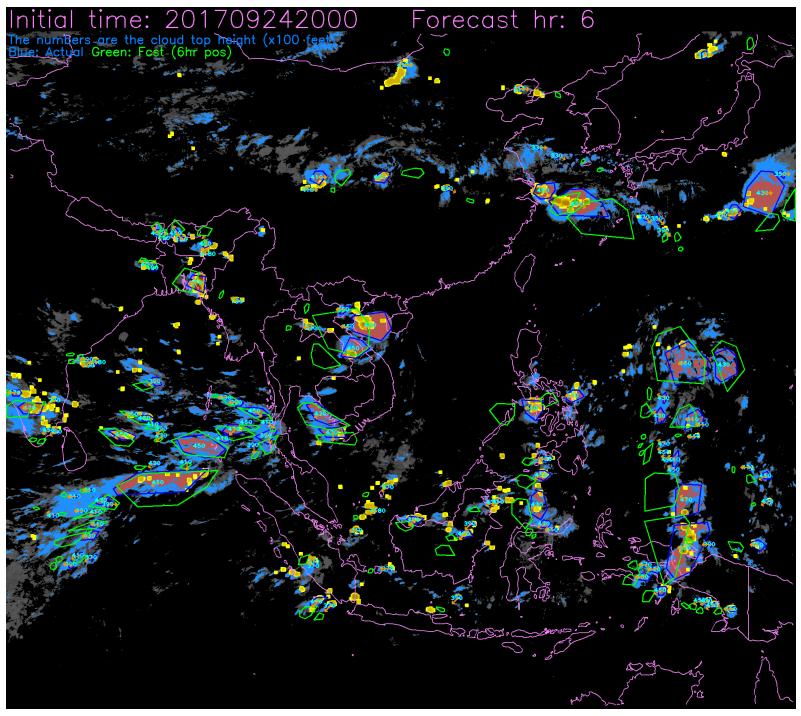
(a)

Observations

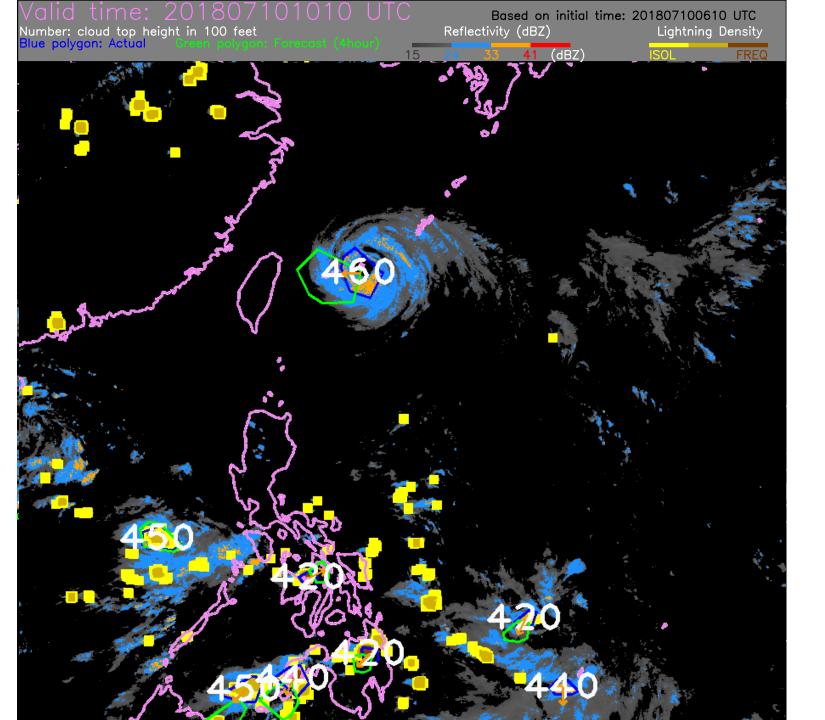
(b)



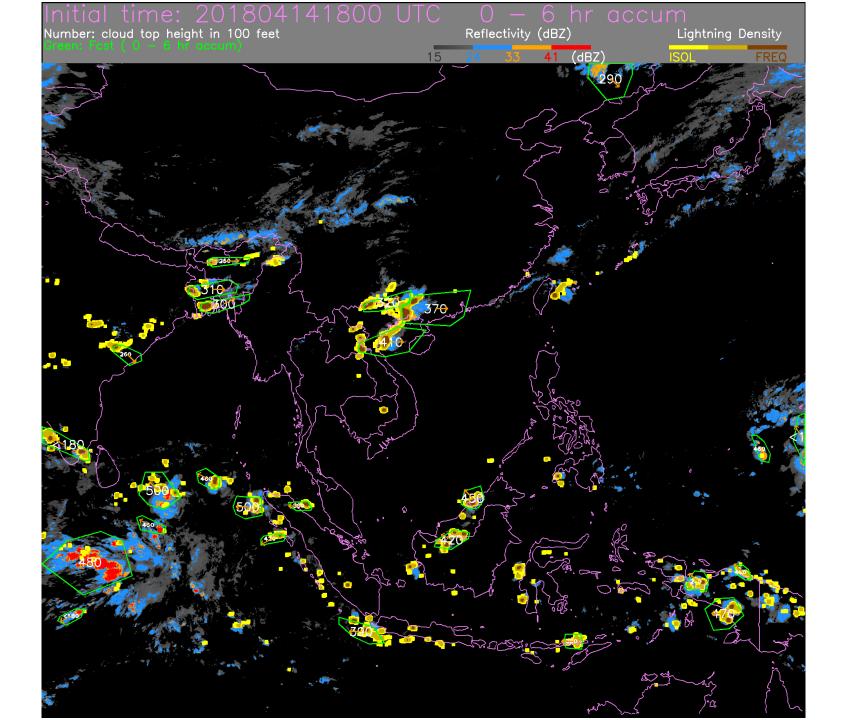
A backpropagation network trains with a two-step procedure. The activity from the input pattern flows forward through the network, and the error signal flows backward to adjust the weights.

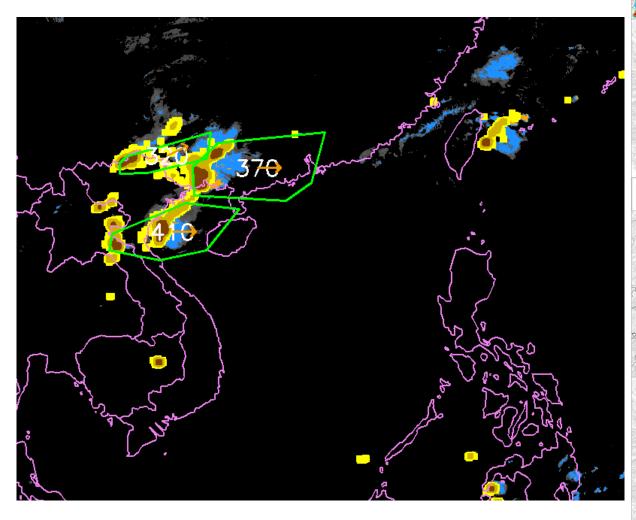


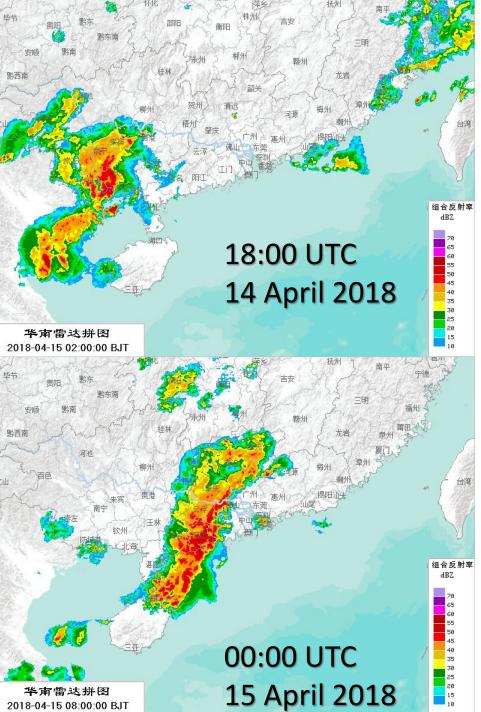
Compare with Available Satellite Product



Significant Convection Nowcast using Himawari-8 retrieved reflectivity available in real-time on HKO's RSMC for Nowcasting website


- Significant Convection Nowcast
 - 0-6 hour nowcast
 - Retrieved reflectivity from Himawari-8
 - Composite imagery with GDL360 lightning density (yellow/brown)
 - Fengyun-4 under development


15 Apr 2018


0-6 hr nowcast from 18:00 UTC

0-6 hr nowcast from 18:00 UTC

Thank You!

THE END