

# SWIRLS QPE, QPF and Probabilistic Nowcast

WMO VCP Workshop on Nowcasting, Seamless Forecasting and Warning Services

29 May 2018



# Quantitative Precipitation Estimation (QPE)



## What is QPE?

#### Daily Rainfall distribution [past 3 months]

Select date: 7 View <>>

Isohyet chart for 7 Oct 2015



For Public

#### For Forecasters

#### 1-Hr Rainfall Distribution Ending at 9:55 AM 2015-10-07 Co-Kriging+Barnes Analysis for HK





## **QPE** for Engineering Departments







## Observations for QPE

| Data Source   | Quality                                                              | Temporal<br>Resolution                               | Spatial<br>Resolution                    | Coverage                                          |
|---------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| Rain<br>Gauge | Very High<br>In-situ continuous<br>measurement                       | Continuous                                           | Only available<br>on the spot            | Depends on<br>the network                         |
| Radar         | Medium<br>Depends on Z-R<br>relationship                             | Sampled<br><u>6-min Scan</u><br>10 samples /<br>hour | Quite good,<br>about 0.5 km              | Medium<br>Typically up<br>to ~250km               |
| Satellite     | Low<br>Requires<br>conversion from<br>reflectance to<br>reflectivity | Sampled<br><u>Himawari-8</u><br>6 samples /<br>hour  | Not so fine, but<br>improving<br>rapidly | High<br>A satellite<br>and scan half<br>the globe |



## Rain Gauge Network in Hong Kong



Total no. > 160, updated every 1 or 5 min



## **Doppler Weather Radars**





## Vertical Coverage Pattern





**Drop-size** Distribution

#### Z-R relationship for each rain-cloud

Parameters 'a' and 'b' varies on rain drop size distribution.





## **Basic Principle**

In rain, radar measures reflectivity, which is the sixth moment of drop size distribution:

$$Z = \int_{0}^{\infty} N(D) D^{6} dD$$

While rain rate is given by:

$$R = c \int_{0}^{\infty} N(D)V(D)D^{3}dD$$

Thus, if we know the DSD with enough accuracy a relationship between Z and R can be established. Experience shows that a power law is a good approximation to this relationship:  $Z=aR^b$ 



## Radar QPE





## From Radar Reflectivity to Rainfall



Radar Images  $\rightarrow$  Every 6 Minutes



## Correlation between ZR data





dbR



## Algorithm to compute a,b value

- Period: 12Apr 15Mar
- Geometric Mean of 10 Radar Images from the last 1hr is used as the average dbZ corresponding to the 1-hr accumulated rainfall



1 hr accumulated rainfall Rain Gauge Data (mm/hr)
Radar Data (dbZ)

• Result:  $Z = 58.53R^{1.56}$ 



## Z-R in other Meteorological Services





## Best Four Z-R relationships





# Dynamic Z-R Calibration

- least square matching (Zawadzki 1987)
- based on latest radar reflectivity and raingauge data
- Inear regression to find a & b:

$$\underbrace{dBZ_i}_{y} = \underbrace{b}_{m} \underbrace{10\log R_i}_{x} + \underbrace{10\log a}_{c}$$

- o updated every 5 min
- rainfall accumulations estimated by integrating the rainfall rates at different times
- requires:
  - a dense raingauge network
  - default values for a & b





## Dynamic Calibration in Hong Kong

- Default values: a = 58.53, b = 1.56
- 10 mins raingauge accumulated R/F surrounding the radar scanning time are used to calculate the a, b by using Least Square Method.
- Iteration stops when the program achieve a good correlation between Gauges and Radar measurements.



## Uncertainties in Z-R





## Z-R Pairing Methods

- **TMM**: Traditional matching method
- **PMM**: Probability matching method
- **WPMM**: Window probability matching method
- WCMM: Window correlation matching method
- Reference:
  - Development of a window correlation matching method for improved radar rainfall estimation https://www.hydrol-earth-syst-sci.net/11/1361/2007/hess-11-1361-2007.pdf



## TMM: Traditional Matching Method



**Fig. 2.** The traditional  $Z_e - R$  matching method (TMM).

 Based on the assumption that raindrop captured by certain radar grid point will fall vertically into the rain gauge right under the grid point



## PMM: Probability Matching Method



Fig. 3. The probability matching method (PMM).

- Consider cumulative distribution function (CDF) of radar reflectivity and rain gauge rainfall rate
- Match reflectivity and rainfall rate at the same percentile



## WPMM: Window Probability Matching Method



 Reduces geometrical mismatch and synchronization error by introducing time window and space window



## WCMM: Window Correlation Matching Method



**Fig. 5.** The concept of the window correlation matching method (WCMM).

 Attempts to identify the highest correlation Z-R pairs from the space and time windows by searching through the reflectivity grid point and singling the one that gives closest standard score



## Shanghai's Method





## Z-R of Rainstorms and Stratiform Rains





## Other Possible Approaches

- Two-segment Linear Regression
- Quadratic Regression
- Disdrometer Network
- Machine Learning
- Real-time Bias Correction
- (wradlib) Adjusting radar-base rainfall estimates by rain gauge observations (<u>Link</u>)
- An Integrated Approach to Error Correction for Real-Time Radar-Rainfall Estimation (<u>Link</u>)



## Methods for QPE

#### • Barnes

- Relatively simple
- Easy to implement
- Co-Kriging
  - Minimize errors
  - More computational intensive



# Barnes QPE with Raingauges only

#### grid-point analysis by Barnes method

interpolation with Gaussian weighting according to distance between data & estimation point:

$$B(x_0) = \frac{\sum_{i=1}^{N_0} w_i G_i}{\sum_{i=1}^{N_0} w_i} \quad w_i = \exp\left(\frac{-h_i^2}{L^2}\right)$$

plus correction using residuals

- **L** is arbitrary
- problems:
  - boundary
  - over/undershoot

eased by post-processing









Solution:

$$\sum_{i=1}^{N_0} \lambda_i(x_0) \gamma_{GG}(x_n, x_i) + \sum_{j=1}^{M_0} \lambda_j(x_0) \gamma_{GR}(x_n, x_j) + \mu_G(x_0) = \gamma_{GG}(x_n, x_0), \quad \text{for } n = 1, \cdots, N_0$$
$$\sum_{i=1}^{N_0} \lambda_i(x_0) \gamma_{RG}(x_m, x_i) + \sum_{j=1}^{M_0} \lambda_j(x_0) \gamma_{RR}(x_m, x_j) + \mu_R(x_0) = \gamma_{RG}(x_m, x_0), \quad \text{for } m = 1, \cdots, M_0$$



# Co-Kriging QPE Raingauge & Radar

Empirical Variograms & Cross-variogram:





# Quantitative Precipitation Forecasts (QPF)



## What is QPF?

Rainfall Nowcast integrated with Automatic Regional Weather Forecast





## SWIRLS Integrated Panel (SIP) for the Hong Kong Observatory





## QPF

- Objective
  - Predict rainfall amount at particular area/ point
- Steps
  - Compare two successive radar images and analyze the motion field with variational optical flow;
  - Predict the evolution of radar echoes with semi-Lagrangian advection of radar echoes; and
  - Convert forecast radar reflectivity to rainfall intensity with static / dynamically calibrated Z-R relationship.



## Principle of Radar-based Rainfall Nowcast

#### 3:00pm



#### 3:06pm




### Generation of Motion Field

#### **Consecutive Radar Images**



#### **Motion Field**

| MuGOF-lv<br>2017-04-21 | 1-r9-a2000<br>15:06 | -s1.5-i6-db | z31  |
|------------------------|---------------------|-------------|------|
|                        |                     |             |      |
|                        |                     |             |      |
|                        |                     |             |      |
|                        |                     |             |      |
|                        |                     |             |      |
|                        |                     |             | **** |
|                        |                     |             |      |



# Rainfall Nowcast by Extrapolation

#### Analysis



#### **1 Hour Forecast**





# Radar Echo Tracking

- Correlation-based
  - TREC / Co-TREC / MTREC
- Variational Optical Flow
  - MOVA / ROVER
- Deep Learning
  - ConvLSTM / ConvGRU / TrajGRU
- References:
  - Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting (Link)
  - Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model (<u>Link</u>)



### Variational Optical Flow

- "ROVER" Real-time Optical-flow by Variational method for Echoes of Radar –
  - Enhance Radar images
  - Derive Motion Field based on the "VarFlow" algorithm developed by Bruhn et al. (2003 & 2005)



# Enhancing Radar Images

- Bowler et al. (2004): Radar or rain rate field is typically noisy and presmoothing is needed for a stable calculation of the partial derivatives.
- Highlight echoes from the convective regime with high dBZ values and play down echoes with intensity of less interest.



$$G(Z) = \tan^{-1}\left(\frac{Z - Z_{\rm c}}{\zeta}\right)$$



# Enhancement of Radar Images









#### **OPTICAL FLOW**

• Assumption:

$$\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} + v \frac{\partial I}{\partial y} = 0$$

• Variational Formulation

$$J = J_{o} + \alpha \cdot J_{v}$$

$$J_{o} = \iint \left[ \frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} + v \frac{\partial I}{\partial y} \right]^{2} dx dy$$

$$J_{v} = \begin{cases} J_{HS} \\ J_{WW} \end{cases}$$
where
$$J_{WW} = \iint \left[ \left( \frac{\partial^{2} u}{\partial x^{2}} \right)^{2} + \left( \frac{\partial^{2} u}{\partial y^{2}} \right)^{2} + 2 \left( \frac{\partial^{2} u}{\partial x \partial y} \right) + \left( \frac{\partial^{2} v}{\partial x^{2}} \right)^{2} + 2 \left( \frac{\partial^{2} v}{\partial x \partial y} \right) \right] dx dy \quad (WW80)$$

$$J_{HS} = \iint \left[ \left| \nabla u \right|^{2} + \left| \nabla v \right|^{2} \right] dx dy \quad (HS81)$$
in original HS formulation



# FORMULATION BY BRUHN ET AL 2003

 $I_x(q) \cdot u + I_y(q) \cdot v = -I_t(q)$  where  $q \in \Omega$ 

Adopting a least-square principle and applying weights to different points in the neighbourhood through Gaussian convolution, it can be solved with the following solution, where the operator \* denotes convolution and  $K\rho$  a Gaussian kernel with standard deviation  $\rho$ . Compared with

the global variational methods

Local Scheme

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} K_{\rho} * (I_{x}I_{x}) & K_{\rho} * (I_{x}I_{y}) \\ K_{\rho} * (I_{y}I_{x}) & K_{\rho} * (I_{y}I_{y}) \end{pmatrix}^{-1} \begin{pmatrix} -K_{\rho} * (I_{x}I_{t}) \\ -K_{\rho} * (I_{y}I_{t}) \end{pmatrix}$$

$$J_{\mathrm{HS}} = \iiint \left[ \left| \nabla u \right|^{2} + \left| \nabla v \right|^{2} \right] dxdy \quad (\mathrm{HS81})$$



# FORMULATION BY BRUHN ET AL 2003

Bi-directional with errors at all coarser levels of the grid hierarchy corrected before going down to the next finer level.



# Motion Field - Product of ROVER (Radar Echo Tracking)





# Parameter Tuning & Ensemble

#### ROVER depends on tunable parameters:

| Parameter      | Significance                                     | Value adopted<br>in ROVER |
|----------------|--------------------------------------------------|---------------------------|
| σ              | Gaussian convolution for image smoothing         | 9                         |
| ρ              | Gaussian convolution for local vector            | 1.5                       |
|                | field smoothing                                  |                           |
| α              | Regularization parameters in the energy function | 2000                      |
| L <sub>f</sub> | the finest spatial scale                         | 1                         |
|                | the coarsest spatial scale                       | 7                         |
| T <sub>r</sub> | the time interval for tracking radar echoes      | 6                         |

| SERN             | 36-Members list                                | [edit] |
|------------------|------------------------------------------------|--------|
| <b>S</b> WIRLS   |                                                |        |
| <b>E</b> nsemble | for dbz in 33<br>for lv in 1 2<br>for rho in 9 |        |
| <b>R</b> ainfall | for alpha in 2000 10000                        |        |
| Nowcast          | for interval in 6 12 30                        |        |



# Forecast by Extrapolation

- Semi-Lagrangian Advection (SLA)
  - Robert scheme (3 iterations to find origin point)
  - Bi-cubic interpolation
  - Flux limiter (local max, min constraint)
  - One-way nesting
  - resolution 1.1 km -> 0.5 km



$$\frac{dZ}{dt} = \frac{\partial Z}{\partial t} + \mathbf{u} \frac{\partial Z}{\partial x} = 0$$





### SWIRLS SLA Examples

- circulation pattern preserved  $\rightarrow$ 

• numerically less dissipative  $\downarrow$ 





Forecast reflectivity – TREC wind Up to 6 hr (6-min interval)



Forecast reflectivity – pure rotation Up to 6 hr (6-min interval)







# Multi-Sensor QPF

- Indirect measurement on precipitation
- Only reflect conditions of cloud top

Artificial Neural Network



Total 23 inputs (IR, VIS values and their structures)

**Radar reflectivity** 

Focus on strong echoes of reflectivity while training the network



### Composite

|                     | TMS radar     | SWAN            | Satellite       |
|---------------------|---------------|-----------------|-----------------|
| Dimension           | 512km x 512km | 1158km x 904 km | 1804km x 1728km |
| Temporal Resolution | 6min          | 6min            | 1hr             |

• After projection, all data have the same spatial resolution of **1km/pixel** 

• Satellite data are advected by its own motion field to 6-min interval data





# Probabilistic QPF



# Why?

- 1. Better support for Rainfall Warning System
- 2. Facilitate cost-benefit analyses
- 3. More tailored to the needs of organizations under various operational constraints



#### SWIRLS Ensemble Rainfall Nowcast

 By tuning the 6 parameters, 36 sets of parameters have been experimented, i.e. ensemble of 36 members.





### Probabilistic QPF (PQPF)





# Stamp Map

|                                  | N                   | EW STAMP | Reflectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rainfall         | Thresholds     | Precentiles     | Rainstorm Viewer       |                |
|----------------------------------|---------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|------------------------|----------------|
|                                  | Sat                 | CMA Rad  | Sat + Rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rad <u>Stamp</u> | Maps Rapid-    | scan (Trial) De | eep Learn Heavy Rain Z | ones           |
|                                  | Page Up Page Down   |          | North R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the sta          | - Stor St      | is the          | The She 3              | the the the    |
| Zoom Level:                      | PRD HK              |          | a de la companya de l | 13. 153.         | a disk and     |                 |                        |                |
| Base Time (HKT):                 | († (±               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Upp Sha          | F 3747 30      | 17 D.17         |                        | 87 NAT NAT NAT |
| 201910140300                     | 0                   | States - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fri sfri         |                | at after        |                        |                |
| Auto Update 🔽                    | < > >               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                 |                        | <u> </u>       |
| Valid time:<br>1 2 3             | 4 5                 | h h 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | t Stor S       | The state       | The the t              | to the the the |
|                                  |                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se Sta           | r Stor S       | ter stier       | Stor Store S           | 19 Sty Sty Sty |
|                                  |                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | The state      |                 | ater ater a            | in the the the |
|                                  |                     | No.      | No S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i de se          | - <u>Xig</u> X |                 | the the t              | in the the the |
| swirlsa/New_STAMP/#/stamp-map?fc | =120&t=201910140300 |          | N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | The state      | ie Ne           | the the t              | in the         |



# PQPF Product 1 Rainfall Intensity Contour Map

• For Specific Exceedance Probability:





# Rainfall Intensity at Fixed Percentile









 Date
 To T+60

 To T+00
 To T+00

 To



# PQPF Product 2 Probability Contour Map

• For Specific Intensity Threshold

36 members produce 36 hourly rainfall predictions

Set a rainfall intensity threshold to make Yes/No decisions: If :

No. of Yes = Y No. of No = N Then probability of the hourly rainfall exceeds a certain threshold is given by Probability =  $\frac{Y}{Y+N}$ 

Selected thresholds: 0.5mm/hr 5mm/hr 30mm/hr



Is your rainfall prediction more than 0.5mm/hr at this location at this time?





### Probability of Exceeding Fixed Intensity





# Verification and Analyses

#### Verified against Radar QPE data:

- resolution 480X480 pixels
- Generated every 6 minutes



One datum for each grid



## Verification and Analyses

Divide the range of forecast probability into 11 bins : 0% -5%, 5%-15%, etc.





# Verification and Analyses

Reliability Diagram - degree to which the model forecast probabilities agree with the observed frequencies



forecast probability = observed relative frequency → the probability forecast is perfectly reliable



# Probability in Time Series

No. of R/G (Past 60 minutes accumulated rainfall)



# SWIRLS Applications





# Rainstorm Warning System

- designed with 3 levels of severity to alert the public about the occurrence of <u>widespread heavy rain</u> <u>which is likely to persist</u> and bring about major disruptions of different scales
- to ensure a state of readiness within the essential services to deal with emergencies
- different levels of impact requiring different responses:



- may develop into RED or BLACK signal situations
- flooding in some low-lying and poorly drained areas
- should reduce exposure to risks such as flooding





- (RED or BLACK) serious road flooding and traffic congestion are likely
- gov. depts., transport operators & other public sectors to response
- students to stay in safe places (either home or school)

stay indoors or take safe shelter until the heavy rain has passed
 employees working in exposed areas should stop work and take
 shelter
 http://www.weather.gov.hk/wservice/warning/rains
 tor.htm



#### **Counting Rain Gauges**



# SWIRLS Integrated Panel (SIP) for the Hong Kong Observatory



**Rainstorm Viewer** 







## QPE/QPF Chart





### Severe Weather Map






#### Probabilistic Rainfall Nowcast



Both Percentile Rainfall Intensity Dased on 201507220400 To T+60 To T+60

Based on SERN (SWIRLS Ensemble Rainfall Nowcast)



1-Hr Rainfall Distribution Ending at 4:00 AM 2015-07-22 Co-Kriging+Barnes Analysis for HK

# Textual Description of QPE/QPF

| Basetime 201507220400 Combined © Black © Red © Amber Period Hour(s) 1 V With Forecast Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he of president and the of the other states and the |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Custom 5 mm 10 mm 30 mm Synopsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copy Chi. Copy Eng. Send to MINDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Message Rainfall Info Rainfall Map Raingauge Location Lightning Info Wind Gust Info Severe Weather Tracks Wind Gust Station Location Specification Case   Word Count Limit Image: Count Count Limit Image: Count Limit                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 在上午3時至4時正,荃灣錄得超過5毫米雨量,市區及葵青錄得超過10毫米雨量,深水埗、中西區、離島區<br>大雨和狂風雷暴會在未來一兩小時持續,請提高警惕。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 及沙田吏錄得超過30毫米雨量。預料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| From 3:00 a.m. to 4:00 a.m., more than 5 millimetres of rainfall were recorded over Tsuen Wan. More than recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. Additionally, more than 30 millimetres of rainfall were recorded over the Urban Areas and Kwai Tsing. It is anticipated that heavy rain and squally thunderstorr hours. Members of the public should be on the alert. | 10 millimetres of rainfall were<br>orded over Sham Shui Po, Central<br>n will persist in the next couple of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



### Rainfall Nowcast with Apps

- Rainfall Forecast in half hour interval in the next two hours
- Actively notify users upon change in state





#### Rainfall Nowcast for the Public





## Rainfall Nowcast integrated with Automatic Regional Forecast





# The End

Thank You!