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Our Nowcasting Service to the Public:

Web-based 2-hour Rainfall and 1-hour Lightning 

Nowcast over the Pearl River Delta Region

Location-based Nowcast via 

MyObservatory Mobile App

Severe Weather 

Warnings

Need a high-resolution 

and accurate rainfall 

nowcast algorithm
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Past Development on AI Rainfall Nowcast:
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Optical flow (ROVER) ConvLSTM TrajGRUActual

A Quick Comparison of Rainfall Nowcast Methods
2-hour Rainfall Nowcast

AI Methods: 

Movement Prediction, Intensity Evolution

Blurring Problem = Reduced Resolution

Inefficient in Nowcast Operation

Need a Better Model & 

Loss Function
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Generator model

(ResConvLSTM)
Input 

sequence

Prediction 

sequence

Input 

sequence

Ground truth

sequence

Input 

sequence

Discriminator 

model

(Multi-Scale CNN)

VGG-19

Style layers

ResConvLSTM-GAN (RCLG)

• ConvLSTM with residual connections in encoder-

forecaster network

• Generative Adversarial Network (GAN) to improve 

representation of small-scale features

Content 

Loss
Style Loss

Adversarial

Loss



6

Generator: ResConvLSTM

ConvLSTM
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Downsample

ConvLSTM
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ConvLSTM

Downsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM

Upsample

ConvLSTM
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… …

Encoder Forecaster

IT-2Δt IT-Δt ÎT ÎT+Δt

Extra layers of RNN module to 

help capture spatiotemporal 

features of actual radar sequence

ConvLSTM

Downsample

ConvLSTM

Downsample

ConvLSTM

Upsample

ConvLSTM

Upsample

Residual connection to aid 

gradient propagation 

through a deeper network

ConvLSTM as 

RNN module
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Discriminator: Multi-layer Convolutional Neural Network (CNN)

Downsample

Output

mean

Actual

Prediction

Input

Input

3 structurally identical CNN 

sub-networks to capture features 

of different spatial scales

Real/Fake

Single scalar output

(Concatenate)

(Concatenate)

Downsample
Adversarial

Loss

Real

Fake

CNN1

CNN2

CNN3
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3 Loss Components
Content 

Loss
Style Loss

Adversarial

Loss

Adversarial Loss – Discriminator Loss

• Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

• Aim :  To generate realistic radar sequence

𝛼1 𝛼2 𝛼3
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3 Loss Components

Adversarial Loss – Discriminator Loss

• Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

• Aim :  To generate output similar to the actual radar sequence

Content Loss – Part of Generator Loss

• Balanced-MAE-MSE Loss : 50% MAE and 50% MSE with Sample Balancing

• Aim :  To generate accurate radar nowcast

Content 

Loss
Style Loss

Adversarial

Loss
𝛼1 𝛼2 𝛼3
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3 Loss Components

Adversarial Loss – Discriminator Loss

• Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

• Aim :  To generate output similar to the actual radar sequence

Content Loss – Part of Generator Loss

• Balanced-MAE-MSE Loss : 50% MAE and 50% MSE with Sample Balancing

• Aim :  To generate accurate radar nowcast

Style Loss – Part of Generator Loss

• Neural Network-based Loss

• Aim :  To mimic style of spatial features from input radar sequence

Content 

Loss
Style Loss

Adversarial

Loss
𝛼1 𝛼2 𝛼3
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3 Loss Components

Adversarial Loss – Discriminator Loss

• Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

• Aim :  To generate output similar to the actual radar sequence

Content Loss – Part of Generator Loss

• Balanced-MAE-MSE Loss : 50% MAE and 50% MSE with Sample Balancing

• Aim :  To generate accurate radar nowcast

Style Loss – Part of Generator Loss

• Neural Network-based Loss

• Aim :  To mimic style of spatial features from input radar sequence

Content 

Loss
Style Loss

Adversarial

Loss
𝛼1 𝛼2 𝛼3

+ =

Example from: https://www.tensorflow.org/tutorials/generative/style_transfer

Content Style Reference Output
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3 Loss Components

Adversarial Loss – Discriminator Loss

• Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

• Aim :  To generate output similar to the actual radar sequence

Content Loss – Part of Generator Loss

• Balanced-MAE-MSE Loss : 50% MAE and 50% MSE with Sample Balancing

• Aim :  To generate accurate radar nowcast

Style Loss – Part of Generator Loss

• Neural Network-based Loss

• Aim :  To mimic style of spatial features from input radar sequence

Content 

Loss
Style Loss

Adversarial

Loss
𝛼1 𝛼2 𝛼3

As the loss components are in different

scale, 𝛼1 – 3 are dynamically balanced and

determined during the training process,

and will be fixed once they have converged.
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Input data

HKO 2km CAPPI Radar Reflectivity Data

Train / Valid set:

2009-01 to 2021-05 

92000 train sequence 

2730 valid sequence

256km radius in 480x480 grid

Date 

range

Domain 

coverage

5 radar imageries in 6 minutes interval

(past 30 minutes)

Evaluation set:

2021-06 to 2021-10

5130 test sequence 

Output data 20 radar imageries in 6 minutes interval
(2-hour local precipitation nowcast)

Training Dataset
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Application of ResConvLSTM-GAN

ResConvLSTM-GAN Optical Flow 

Actual Observations

TrajGRU ConvLSTM
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Verification

Note:  POD – Probability Of Detection ; FAR – False Alarm Rate

• AI Methods > ROVER; 

• RCLG produces less blurry output, so lower POD and FAR
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Verification

Note: CSI – Critical Success Index ; HSS - Heidke Skill Score

• RCLG has better overall skills compared to TrajGRU
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Verification

• Learned Perceptual Patch Similarity (LPIPS) metric

• A Neural Network(NN)-based metric to match 

human perception, lower the better

• Measure the difference of activations in a pre-

defined NN between 2 images 

• Pre-defined NN:  AlexNet

• TrajGRU-generated outputs are perceptually dissimilar 

while RCLG could generate more realistic outputs
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Input data

HKO 2km CAPPI Radar Reflectivity Data

Train / Valid set:

2009-01 to 2021-05 

92000 train sequence 

2730 valid sequence

256km radius in 480x480 grid

Date 

range

Domain 

coverage

5 radar maps of 6 minutes interval

(past 30 minutes)

Evaluation set:

2021-06 to 2021-10

5130 test sequence 

Output data 20 radar maps of 6 minutes interval
(2-hour local precipitation nowcast)

H8-GK2A Satellite Simulated Reflectivity Data

Train / Validation set:

2021-02 to 2022-09

66320 train sequence

11180 valid sequence

2501x2501 grid from 

(lat 60°N, lon 80°E) to

(lat 40°S, lon 180°E)

6 satellite maps of 20 minutes interval

(past 2 hour)

12 satellite maps of 20 minutes interval
(4 hours regional satellite reflectivity nowcast)

Evaluation set:

2022-10 to 2023-02

13580 test sequence
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A Sample of Satellite Nowcast –Tropical Cyclone Hinnamnor

Actual Observations ResConvLSTM-GAN
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Concluding Remarks and Future Work

• ResConvLSTM-GAN is capable of generating more accurate and realistic radar nowcasts 

over the next 2 hours and the framework is applicable to satellite nowcast

• To replace the generator and discriminator by more efficient deep learning modules

• e.g. Transformer-based model,  Wasserstein GAN

• To implement a physics-driven nowcast framework



Thank you very much


