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Past Development on Al Ramfa” Nowcast: Deep Learning for Precipitation Nowcasting:

A Benchmark and A New Model

Convolutional LSTM Network: A Machine Learning

Appfﬂﬂfh fﬂr PfEClpltﬂtlﬂn NﬂWCﬂStlng Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung

Department of Computer Science and Engineering
Hong Kong University of Science and Technology
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Department of Computer Science and Engineering
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Figure 3: Encoding-forecasting ConvLSTM network for precipitation nowcasting



2-hour Rainfall Nowcast

Al Methods:
© Movement Prediction, Intensity Evolution
& Blurring Problem = Reduced Resolution
= Inefficient in Nowcast Operation
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Need a Better Model &
Loss Function
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ResConvLSTM-GAN (RCLG)

. ConvLSTM with residual connections in encoder-
forecaster network
. Generative Adversarial Network (GAN) to improve
representation of small-scale features
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Generator: ResConvLSTM

§
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ResConvLSTM-GAN

. ConvLSTM with residual connections in encoder-
forecaster network
. Generative Adversarial Network (GAN) to improve

representation of small-scale features
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Discriminator: Multi-layer Convolutional Neural Network (CNN)
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ResConvLSTM-GAN

. ConvLSTM with residual connections in encoder-
forecaster network
. Generative Adversarial Network (GAN) to improve

representation of small-scale features
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3 Loss Components

Adversarial
Loss

Adversarial Loss — Discriminator Loss

* Binary Cross-entropy (BCE) Loss : Predicted Label vs Actual Label

* Aim : To generate realistic radar sequence
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3 Loss Components

Adversarial

Loss

Content Loss — Part of Generator Loss
* Balanced-MAE-MSE Loss : 50% MAE and 50% MSE with Sample Balancing

* Aim : To generate accurate radar nowcast
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3 Loss Components

Adversarial

Loss

Style Loss — Part of Generator Loss
* Neural Network-based Loss

* Aim : To mimic style of spatial features from input radar sequence



3 Loss Components

Adversarial
Loss

Style Loss — Part of Generator Loss

e Neural Network-based Loss bl 47

“A\' %

* Aim : To mimic style of spatial features from input radar sequence

Example from: https://www.tensorflow.org/tutorials/generative/style_transfer



3 Loss Components

Adversarial

Loss

As the loss components are in different
scale, a1 - 3 are dynamically balanced and
determined during the training process,
and will be fixed once they have converged.
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Training Dataset

Date
range

Domain
coverage

Input data

Output data

HKO 2km CAPPI Radar Reflectivity Data

Train /Valid set:
2009-01 to 2021-05
92000 train sequence
2730 valid sequence

Evaluation set:
2021-06 to 2021-10
5130 test sequence

256km radius in 480x480 grid

5 radar imageries in 6 minutes interval
(past 30 minutes)

20 radar imageries in 6 minutes interval
(2-hour local precipitation nowcast)
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Optical Flow

o o Reflectivit 2022-11-23 Reflectivity -11-23
APPI |Cat| on Of Resco nv LSTM -GAN B:;SS I@\gl 1yS:24H ___Valid @ 15:30H ,, Based @ 15:24H ____ Valid @ 15:30H

62
240 60 _
58
o 23.5° % 235
Actual Observations 5
23° 50 23° ]
2 " 47
Reflectivity 2022-11-23 "
. : N 2255° 5
~ Valid @ 15:30H H PEA g
24.5° = = 5 g 3 g
3 By . 2
24 4 H St e ﬁ:‘(‘ * i as | N 215
’ ] - s8 28
o "»’F = s 24
Fa & 21°
.- - 56
23.5°1 20
-~ S .
[ ’ 53 205 2 20.5
L 50 10
23 4
47 112
] 44 _ o -11-23
225 5 Reflectivity 2022-11-23 Y
[ o] . H .
E Ll Based @ 15:24H Valid @ 15:30H ... pased @ 15:24H . Valid @ 15:30H
§ £ 24.5° T 7 1
38 ‘E "
22° 4 &
34 & 24 24°
21.5°1 . 22 235 23.5°
28 53
” 50
210 24 23° 23
47
20 ”
.25 5 0, 225" N
S50 15 1;’ = % 41‘:;
| s B
10 2° g 22° 38§
] il
X A
112° 112.5° 113° 1135 114° 114.5° 115° 115.5° 116° 116.5° s . EX
Longitude o .
- L 21 .
20
20.5° 205 15

112* 112.5* 113% 113.5% 114° 114.5° 115* 115.5* 116° 116.5° 11‘24 112‘_5= 11'3“ 113{5" 114° 114‘,5“ 1)‘5" 115.5° 11‘6“ 116"5'



V(. LR

G” HONG KONG OBSERVATORY

—— rover_nonlinear ° AI MethOdS > ROVER, Verlflcatlon
trajGRU
 ResConvLSTM-GAN * RCLG produces less blurry output, so lower POD and FAR
> 0.5 mm/hr > 2.0 mm/hr > 5.0 mm/hr > 10.0 mm/hr > 30.0 mm/hr > 50.0 mm/hr
mean = 0.5385 mean = 0.4686 mean = 0.368 mean = 0.246 mean = 0.1792 mean = 0.1424
0.8 mean =0-7426- | W‘ ’Q_:i mean = 0.5577 | mean = 0.438 mean = 0.3505
0.6 : 1 ] .
o)
O
Q0.4 ]
0.2 ]
6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102
mean = 0.4892 mean = 0.5652 mean = 0.6201 mean = 0.6781 mean = 0.7246 nLeam/=__O,lE>2-6—
0.8 mean = 0.4198 | mean = 0.5035 | mean = 0.5768_| mear= M- /rnear =669
0.6 |
e _—
5
0.4
0.2
6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102

Lead time [mins]

Lead time [mins]

Note: POD — Probability Of Detection ; FAR — False Alarm Rate

Lead time [mins]

Lead time [mins]

Lead time [mins]

Lead time [mins]




V(. LR

G” HONG KONG OBSERVATORY

—— rover_nonlinear 11 1
trajGRU * RCLG has better overall skills compared to TrajGRU Verification
—— ResConvLSTM-GAN
> 0.5 mm/hr > 2.0 mm/hr > 5.0 mm/hr > 10.0 mm/hr > 30.0 mm/hr > 50.0 mm/hr
mean = 0.3642 mean = 0.2998 mean = 0.2377 mean = 0.1683 mean = 0.127 mean = 0.1021

mean = 0.4737 | mean = 0.4157 | mean = 0.3539 | mean = 0.2892 | mean = 0.2453 | mean = 0.2125

0.61

CSl
= o
N ™

6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102
mean = 0.3535 | mean = 0.2651 | mean = 0.2062 | mean = 0.1687

mean = 0.4843 | mean = 0.422

mean = 0.4946 mean = 0.4255 mean = 0.3738 mean = 0.3317

mean = 0.5548

mean = 0.604

7

6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102 6 30 54 78 102
Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins]

Note: CS| — Critical Success Index ; HSS - Heidke Skill Score
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—— rover_nonlinear

trajGRU

—— ResConvLSTM-GAN

0.45;

0.40+

0.351

LPIPS

0.30-

0.254

LPIPS - Lead time plot

mean = 0.31449

mean = 0.2829

20 40 60 80 100 120
Lead time [minutes]

Verification

Learned Perceptual Patch Similarity (LPIPS) metric

« A Neural Network(NN)-based metric to match
human perception, lower the better

- Measure the difference of activations in a pre-
defined NN between 2 images

- Pre-defined NN: AlexNet

TrajGRU-generated outputs are perceptually dissimilar

while RCLG could generate more realistic outputs
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Date
range

Domain
coverage

Input data

Output data

H8-GK2A Satellite Simulated Reflectivity Data

Train / Validation set; Evaluation set:

66320 train sequence
| 1180 valid sequence

2501x2501 grid from
(lat 60°N, lon 80°E) to
(lat 40°S, lon 180°E)

| 3580 test sequence

6 satellite maps of 20 minutes interval
(past 2 hour)

|2 satellite maps of 20 minutes interval
(4 hours regional satellite reflectivity nowcast)
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A Sample of Satellite Nowcast — Tropical Cyclone Hinnamnor
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Concluding Remarks and Future Work

* ResConvLSTM-GAN is capable of generating more accurate and realistic radar nowcasts
over the next 2 hours and the framework is applicable to satellite nowcast
* To replace the generator and discriminator by more efficient deep learning modules
* e.g. Transformer-based model, Wasserstein GAN

* To implement a physics-driven nowcast framework
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Thank you very much



