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|. Evolution of Deep Learning Precipitation Nowcast Models in HKO
Nowecasting System SWIRLS

2. Regional Convection / Precipitation Nowcast Supports using Deep
Learning Models

3. Ensemble nowcast and Al-based guidance for rainstorm / extreme
precipitation

4. Way forward on Al nowcast support
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SWIRLS
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QP J 1ONG KONG DBSLRVATORY X. Shi, Z. Chen, H.Wang, D.Y.Yeung, W.K.Wong and W.C.
Woo. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. NIPS 2015.

Encoding-forecasting ConvLSTM network

https://arxiv.org/abs/1506.042 |4
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Figure 3: Encoding-forecasting ConvLSTM network for precipitation nowcasting


https://arxiv.org/abs/1506.04214

(giﬂ BERAXE Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-
-y Yan Yeung, Wai-kin Wong, and Wang-chun Woo, 2017: Deep
learning for precipitation nowcasting:A benchmark and a

Trajectory Gated Recurrence Unit (TI’&]GRU) new model.  https://arxiv.org/pdf/|706.03458.pdf

TrajGRU replaces LSTM, introduces “Trajectory” and adopts weighted error function

“HKO-7" dataset available to community to promote development of Al in nowcasting

GRU (Gated Recurrent Unit) includes Trajectory: Weighted Error:
reset gate and update gate, similar to Recurrent connections are dynamically optimize performance in heavy rain
LSTM but more efficient. determined
H, H, H; Hy 1, z<2
2, 2Z52<b
h |_/I _ w(x) to each pixel according to its rainfall intensity z: w(x) = ¢ 5, 5 <z <10 . Also, the
¢ —1—F eo—t—" 10, 10< 2 < 30
30, = >30
\/‘ \/‘ masked pixels. have weight 0. The resulting B-MSE and B-MAE scores are compqtcd as B-MSE =
_Tl' Z,.\ 1 Z,N; ZA:M’I Wn,ij (Tn,iyj — -'.'lu-./).') and B-MAE = % Z,} 1 Z,IN; Z»;‘\”] Wn,i,j|Tnij —
‘r T T 1 Zn,i,j|, where N is the total number of frames and w,, ; ; is the weight corresponding to the (i, j)th
X X, X3 X, pixel in the nth frame. For the conventional MSE and MAE measures, we simply set all the weights

to 1 except the masked points.

(a) ConvRNN: Links are fixed over time/location.
H, H H; Hy

A f } (i

&) R g X3 Xy
(b) TrajRNN: Links are dynamically determined.
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ResConvLSTM-GAN (RCLG)

. ConvLSTM with Residual connections in encoder- [ e
forecaster network
. Generative Adversarial Network (GAN) to improve

representation of small-scale features

Generator model) J e .
(RGSCOHVLSTM) J Prediction Ground truth
I \ sequence J \ sequence y
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Earthformer

. Space-time Transformer model based on Cuboid Attention

. Spatiotemporal data are divided into non-overlapping cuboids, and

self-attention is applied locally within each cuboid

. Global vectors are used to connect the cuboids for capturing the

overall pattern

Cuboid Attention Block X D

Initial Positional Embedding

v

> Cuboid Attention Block X D

Downsample

Cuboid Attention Block x D

A 4

Upsample

> Cuboid Attention Block X D

?

2D-CNN + Downsample

A

Y
https://arxiv.org/abs/2207.05833

v

2D-CNN + Upsample

o

[yT +i]§(=1

M X

! Cuboid attention layer with
@ global vectors

Xout

(a) strategy="1ocal” (b) strategy="dilated” (c) strategy="1ocal”
shift=(0, 0, 0) shift=(0, 0, 0) shift = (0,1,1)

Cuboid decomposition strategies in attention layer


https://arxiv.org/abs/2207.05833
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Enhanced feature preservation using Fourier Amplitude and
Correlation Loss (FAC L) Ref: https://arxiv.orglabs/2410.23159

Predicted frames of the Earthformer models trained with MSE and FACL

i M—-1N-1
DFT of image X 1 —igm(mE 4 na)
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Image FCL(X,X)=1—2 2| ]
structure \/Z |F|2 Z |F|2 éé
ﬁ

A new metric RHD (Regional Histogram Divergence) to
improve over traditional L1 loss, L2 loss and FSS (Fraction Skill Score)
to measure patch-wise similarly between two spatiotemporal patterns

Nz Ny
Zz 12; 1( ] 013)2
‘Ny
Sl Y FE +Zz 5 21 O3

Earthformer

FSS=1—

O ,(x) F’ and O’ is predicted and observed discrete probability distribution respectively

N, Ny ZZDKL N Vy ZZ Z O s .a,,g (z)

i=1 j=1 i=1 j=1 2€X

RHD =

= RHD penalizes more on “blur’ pattern



https://arxiv.org/abs/2410.23159

@S rocronc omstrvatony
Implicit Stacked Autoregressive Model for Video Prediction
(IAM4VP)

A stacked autoregressive method applied in an implicit video prediction model resulting in improved performance at
longer lead time, as predictions are sequentially stacked in the queue

Sinusoidal
Positional Encoding
| |
Spatial = Spatio-Temporal Spatial ~ © 1. 1.
—_— — Observed frame onc {0 - p{ p‘(
Al 3 ;( :-,"? 1 Encoder T L Concatenation Predictor p(.) Decoder = |
< e(.) L] d(.) Output ¥ Ground

Future t) Truth
EE ( y
< X

Inputs Mask
t Generator
M,

: - Learned
L o Prior
Future Mask Masked MSE LOSS

frame frame

https://arxiv.org/abs/2303.07849
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Earthformer
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Verification Metrics ,.
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Verification Metric - Perceptual Similarity

*  Learned Perceptual Patch Similarity (LPIPS) metric
* More realistic features generated in ResConvLSTM-GAN nowcast

« A Neural Network(NN)-based metric to match compared to TrajGRU and optical flow extrapolation

human perception, lower the better

—— rover_nonlinear

—— trajGRU
- Measure the difference of activations in a pre- - ResConviSTILGAN LPIPS - Lead time plot
defined NN between 2 images 0.45.
. Pre-defined NN: AlexNet
Ground truth Prediction
0.401
Spatially averaged
L%N_\urm
0.35-
N &
- - \ . % E
0.301
__ | ___ _@ ] L @_@@_, Perceptual
Normalize Loss mean = 0.31449
o mean = 0.42036
0.25 mean = 0,2829
ﬂ W 20 40 60 80 100 120

o , L) E Lead time [minutes]
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Denoising Diffusion Probabilistic Model (DDPM)

Forward Process N

* Diffusion Model consists of two |

processes: Forward Process
(noising) and Inverse Process q(x¢ | Xe-1) = N (x5 /1 = Bexe—1, Bel)

(denoising) /\
© C
e — : DN -.},‘f s

l_//

* To capture the data distribution by

training a neural network to undo e N v S

. e t-1 i .’ t
a Markov noising process that
gradually distorts the data q(xe—1 | x¢) = po(xe-1 | X¢)

4 |

Inverse Process (Denoising)
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DDPM implementation

y = g + r
target blurry prediction residual

* “Deterministic model”: any model that
makes “blurry prediction” such as CNN or
Transformer based models

* Diffusion model in learning to generate the
residual based on past radar frames and
forecast from the “Deterministic model”
and able to generate more realistic forecast

7
=M g 4 IL*
b ?3 Deterministic S 2
wﬁ' T Model /‘ﬂ}: @

Input Deterministic Pred

Inference

L G

ResidualPred \ | Final Prediction |

T

[ |

,rd o - e k ELoy b )
e Sy N %

WL seeeen
ot Y

Deterministic Pred

o T ,}f*\’:"‘” e
[ Residual preqd | i=1 [ Residual preq | j=2 [ Residual preq1i=3
A A A

Concatentate

ConvGRU

—> ] Guiding Information ‘

In the denoising process, different outputs could be generated and
thus producing an ensemble prediction
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Earthformer
WMRNN
Diffusion
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Earthformer
VMRNN
Diffusion
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CSlI

— RCLG

Earthformer

VMRNN

Diffusion a single realization of diffusion noise input

= 13dBZ = 22dBZ = 29dBZ = 33dBzZ = 36 dBZ = 38 dBZ = 40 dBZ = 44 dBZ = 48 dBZ
0.7 mean = 0.41835 | mean = 0.3820% | mean = 0.32395 | mean = 0.25122 | mean = 0.20163 | mean = 0.17002 | mean = 0.13274 | mean = 0.06848 | mean = 0.01277
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mean = 0.6211} mean = 0.59284 mean = 0.52929 mean = 0.44780 mean = 0.39052 mean = 0.35460 mean = 0.30864 mean = 0.18206 mean = 0.03406
0.7 - mean = 0.64853 mean = 0.61057 | mean = 0.54277 | mean = 0.45120 mean = 0.3897] | mean = 0.35224 | mean = 0.27825 | mean = 0.12807 | mean = 0.02819
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had —— ResConvLSTM-GAN

—— FERarthformer
— Deterministic (VMRNN)  Perceptual loss (LPIPS)
—— Diffusion
0.351
Verification Metric - 0.30.
Perceptual Similarity "
Q-
o
_
0.251 better
mean = 0.30995
0.201 mean = 0.36520
mean = 0.32952
mean = 0.22919
0.15+

60 120
Lead time [minutes]
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Base time: 2025-03-15 14:00 HKT

Diffusion Nowcast (8) Ensemble Members at T+60 min
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|-hour nowcasts from extrapolation and

multi-model deep learning techniques
Base time: 2025-03-15 14:00 HKT

ResConvLSTM-GAN
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2-hour nowcasts from extrapolation and

multi-model deep learning models
Base time: 2025-03-15 13:00 HKT

ResConvLSTM-GAN TrajGRU
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T+120 min nowcasts from deep learning models 2025-05-09 11:36 HKT

ResConvLSTM-GAN TrajGRU Earthformer

Reflectivity 2025-05-09 g2 Reflectivity 2025-05-09 e Reflectivity 2025-05-09
Based @ 09:36H Valid @ 11:36H Based @ 09:36H Valid @ 11:36H Based @ 09:36H Valid @ 11:36H

11:36:01

9 MAY 2025 HKT

— e o o o o e e e o e e e e

IAM4VP Fourier Diffusion Ensemble Mean

Reflectivity 2025-05-09 2 Reflectivity 2025-05-09

Reflectivity (8-member mean) 2025-05-09
Based @ 09:36H Valid @ 11:36H Based @ 09:36H Valid @ 11:36H

Based @ 09:36H Valid @ 11:36H

Al nowcast models showing two major convective
areas over HK and PRD in T+2h nowcast, with
Earthformer and Diffusion Ensemble picking up
more stronger development to the west of PRD.

Rafiectiuty Bmember mean

Retiectivty [082)

In comparison, ResConvLSTM and IAM4VP
indicate a stronger development over HK and its
vicinity to the east.

nes W s ur s nes us mss ue e

C
B2

- o e e e e e e e e e e .
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T+120 min nowcasts from DDPM members

Diffusion ensemble members having different intensity / distribution of convection over HK; while “more agreeable”
on the stronger convective development over the western part of the coastal areas =» ensemble consensus
producing more realistic indication on the difference in their intensities

2025-05-09 11:36 HKT

Reflectivity (8-member mean) 2025-05-09
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Use of AI/ML in nowcasting — Precipitation and Significant Convection
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Hong Kong Observatory Nowcasting Services Website)
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Earthformer

Cuboid Attention Block X D

Initial Positional Embedding

v

Cuboid Attention Block X D

Downsample

y

Upsample

Cuboid Attention Block x D

v

T

Cuboid Attention Block X D

2D-CNN + Downsample

v

t 1t

is applied locally within each cuboid

https://arxiv.org/abs/2207.05833

2D-CNN + Upsample

v

[yT +i]‘£{=1

Space-time Transformer model based on Cuboid Attention

3 ) ErEsEREERREL

WMO

Spatiotemporal data are divided into non-overlapping cuboids, and self-attention

Global vectors are used to connect the cuboids for capturing the overall pattern

RSMC for Nowcasting

Xout

(a) strategy="1ocal”
shift=(0, 0, 0)

A 4

i)

Cuboid attention layer with
global vectors

(b) strategy="dilated” (c) strategy="1ocal”
shift=(0, 0, 0)

shift = (0,1, 1)

Cuboid decomposition strategies in attention layer
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Extending satellite retrieved reflectivity nowcast
using Earthformer
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Earthformer for CMA radar composite with H9/GK2A satellite simulated reflectivity in
AINPP intercomparison project

CMA radar composite for
AINPP intercomparison
experiments

|8-30N 104-120E

Simulated
reflectivity using
H9/GK2A
imagers
composite

Mosaic reflectivity imagery

16.00-36.48N, 101.76-122.24E @ 0.01 deg
(2048 x 2048 pixels)
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Satellite-Radar Composite Reflectivity

Training / Validation set:

Date range
Mar 2023 to Oct 2024
Domai 2048 x 2048 grid from
omain
coverage 16 to 36.48N; 101.76 to 122.24E
(0.01x 0.0l deg)
Input data 6 maps with 20 minutes interval

(2 hours of observations)

24 maps with 20 minutes interval

Output data
P (8 hours regional reflectivity nowcast)
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RSMC for Nowcasting
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Verification - POD, FAR and HSS

POD - Lead time plot
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Ensemble Nowcast and Al-based Guidance in
Extreme Precipitation Prediction
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T+1h nowcast from
6 deep learning
algorithms

Super Typhoon Ragasa (2025-09-24)
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Exceptionally severe rainstorm on 7-8 September 2023

202356 9 B7 Emmml(gmmrmggmm)

20234 9 B8 HHNARE (ERNEFIREEZNE)
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Highest Daily Total Rainfall (mm) at Hong Kong Observatory for All Months

Record Since: 18584.03.01, exclude 1940-1946

[ 1 |[ 1 | 158.1 I 2023.09.07 I | Ne  Rank Total Date of record
[ 2 [ 2 ] 145.5 I 2008.06.07 I 09 | 1 1 534.1 1926.07.19
T E 115.1 I 2006.07.16 I 03 | 2 2 320.6 1889.05.30
[ 4 [ + | 109.9 I 1992.05.08 I 07 | 3 3 4235 2023.09.08
[ 5 |[ 5 | 108.2 I 1966.06.12 I 07 | 4 4 411.3 1993.06.09
[ & |[ & | 105.9 I 2023.09.08 I 08 | : - b 1966.06.12

= (i1 (1] 346.7 1983.06.17
[ 7 [ 7 | 104.8 I 1989.05.02 I 13 | 5 5 03 18860715
[ s |[ s | 100.7 I 1926.07.19 I 04 | 3 3 3342 1982 0816
L ¢ [ o | 100.0 | 1968.06.13 | 03 | 9 9 329.7 2021.10.08
[ 10 |[ 10 | 08.7 I 1972.06.18 I 12 | 10 10 3755 1965.00.27
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Latitude

=» Dynamic z-R relationship based on CAPPI reflectivity and
32-member DDPM ensemble raingauges in HK (z = a RP) to generate hourly rainfall
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1-hour Deep-learning QPF Endin9023-09-07 22:00H
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1-hour Deep-learning QPF (32-member mean) Ending at 2023-09-07 22:00H
=]

23

\ _ngr Rainfall Di;_’ ibution Ending
o-Kriging+Barnes Analy.

§

lhr QPF Base time: 2200H

1-hour Deep-learning QPF Ending at 2023-09-07 23:00H

| Distribution Ending at 11:00 PM 2023-09-07

i d}for bll&(‘“ i

1-hour Deep-learning QPF Endin at 2023-09-07 23:00H

66

1-hour Deep-learning QPF (32-member mean) Ending at 2023-09-07 23:00H

=
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100 Highest 1-Hour Total Rainfall (mm) at the Hong Kong Observatory for All Months

ERVATORY

Ending Hour
= e | MEp
[ 1 [ 1 | 158.1 [ 2023.09.07 [ 24

2 2 1455 2008.06.07 09
3 3 115.1 2006.07.16 03
4 4 109.9 1992.05.08 07
5 [ s 108.2 I 1966.06.12 [ 07
6 6 105.9 2023.09.08 08
7 7 104.8 1989.05.02 13
8 8 100.7 1926.07.19 04
9 9 100.0 1968.06.13 03
w [ 1w | 98.7 I 1972.06.18 [ 12

-Hr Fi“airfifgll Distribution Ending at 12:00 AM 2023-09-08
o-Kriging+Barnes Analysis for W\Q

[\

Eff.R/F (mm)
No. of threshold- m«g:uc.o
exceeding reference Cap-B: 70.0
raingauges @ 00:09 AM Cap-R: 50.0

0 30 mm S:ao-—:\: 39,0

Latitude

2023-09-07
Valid @ 00:00H

Reflectivity (32-member mean)
Based @ 23:00H

112¢ 112.5° 113° 113.5° 114° 114.5° 115° 115.5° 116° 116.5°
Longitude

1-hour Deep-learning QPF (32-member mean) Ending at 2023-09-08 00:00H

Reflectivity 32member mean

o7



sl

HSS

POD

FAR

HONG KONG OBSERVATORY

Diffusion (ensemble mean) vs optical flow extrapolation

(CSI, HSS, POD, FAR)

Deep-Learning 480x480 from 202309071800 to 202309081200 every 6min

—— Diffusion (4 hrs, 32m)

—— ROVER-A (4 hours)

>=0.5mm/hr >=2mm/hr >=5mm/hr >=10mm/hr >=15mm/hr >=20mm/hr >=30mm/hr >=50mm/hr >=100mm/hr
Lo = Lo ———— 10 ——— 10 = L0 Lo = Lo = Lo — 10 =
e "2 Mean = 881 b o girRid e mean R i Mean|= 8:83 mean|= 8:832 meanm L4
0.8 1 \ 0.8 1 0.8 0.8 1 0.8 1 0.8 1 0.8 1 0.8 0.8
0.6 - \ 0.6 - & 0.6 0.6 - 0.6 - 0.6 - 0.6 - 0.6 0.6
0.4 0.4 0.4 % 0.4 1 —\ 0.4 1 0.4 1 0.4 0.4 0.4
0.2+ 0.2 0.2 021 e 021 g 0.2 - \ 0.2+ \ 0.2+ 0.2
0.0 ‘ : : — 0.0 y : ‘ ~ 0.0 ‘ ‘ ‘ ~ 0.0 ‘ ‘ : ~ 0.0 ‘ : ; ~ 0.0 \\__—"‘_“_' 0.0 : T : — 0.0 y : : ' 0.0 ; : ' .
0 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 18C 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240
Lo — Lo — Lo — Lo — L0 — L0 — — Lo — 10 —
mean|= 8.8 mean = 8:338 mean= 838 mean = 8:199 mean|= 8118 mean= 18 mean|= 8:049 mean|= 8:88 mean = 8:881
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.6 \ 0.6 4 \ 0.6 - \ 0.6 0.6 0.6 0.6 0.6 0.6
0.4 1 0.4 1 0.4 \ 0.4 4 \ 0.4 4 0.4 4 0.4 0.4 0.4
02 | 02 | 02 02 | \ 02 | & 02 | g 021 \ 02 02
0.0 ‘ T T — 0.0 T T ‘ ~ 0.0 ‘ ‘ ‘ ~ 0.0 ‘ ‘ T ~ 0.0 ‘ T T — 0.0 ‘ T . — 0.0 . : T — 0.0 : r : — 0.0 : : r .
0 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 0 60 120 180 240 O 60 120 180 240 O 60 120 180 240
Lo — Lo — L0 ———— 10 — Lo — Lo — Lo — Lo — 10 —
%2 mean = 8:48% mEan = 8814 ot MEsh|= 8-70¢ mean|= mean|= 8:47 megn|= 8:884 WSRO %Y
0.8 1 x 0.8 1 r\ 0.8 0.8 1 0.8 1 0.8 1 0.8 1 0.8 0.8
0.6 - 061 ——— | 061 ’-\ 0.6 - 0.6 - 0.6 - 0.6 - 0.6 0.6
0.4 1 0.4 1 0.4 \ 0.4 1 0.4 1 0.4 1 0.4 0.4 0.4
0.2 1 0.2 1 0.2 4 0.2 1 \ 0.2 1 K 0.2 1 k 0.2 ’_\ 0.2 0.2
0.0 ‘ : : — 0.0 y : ‘ ~ 0.0 ‘ ‘ ‘ ~ 0.0 ‘ ‘ : ~ 0.0 ‘ : : ~ 0.0 ‘ . : — 0.0 : : : ~ 0.0 ; r : — 0.0 ; : ' .
0 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180C 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240
Lo Lo Lo Lo Lo Lo Lo Lo 10
0.8 0.8 - 0.8 0.8 - 0.8 - 0.8 1 / 0.8 / 0.8 I?J’J_ N V
1 1 ol 1 /4,—/’—” 0.6 7 / 0.6 - 0.6 - 0.6+ 0.6
0.4 0.4 0.41 /_,4 0.4 0.4 0.4 0.41 0.41 0.4
0.2 1 0.2 1 — 02+ o] 021 — 0.2+ 0.2 1 0.2+ | 0.21 Sabl °21
,___————"-__-__——————‘W'Fq 0 I { mean|= (.22 mean|= Q.30 mean|= Q.23 mean|= ean|= mean|= Q.7 ean =0 ] megn = nap
T 0. mean = 6.§1§ mean = 6‘355 mean = 6‘483 Mean = mean = mean = 5?%2 mean = 0.863 mean = 0.988
0.0 ‘ T 0.0 T T ‘ — 0.0 ‘ ‘ ‘ — 0.0 ‘ ‘ T — 0.0 ‘ T T 0.0 ‘ T T — 00 T T : — 0.0 T T : — 0.0 T T T :
0 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 0 60 120 180 240 O 60 120 180 240 O 60 120 180 240 O 60 120 180 240

Lead time [mins]

0.5

mm/hr

Lead time [mins]

2.0

mm/hr

Lead time [mins]

5.0

mm/hr

Lead time [mins]

10.0

mm/hr

Lead time [mins]

15.0

mm/hr

Lead time [mins]

T+12 —T+240 minutes

20.0
mm/hr

Lead time [mins]

30.0

mm/hr

Lead time [mins]

50.0

mm/hr

Lead time [mins]

100.0

mm/hr



“” HOh;G KONG OBSERVATORY
Diffusion (ensemble mean) vs optical flow extrapolation

(FSS 3x3 window size)

FSS Score win3_stride2 Deep-Learning 480x480 from 202309071800 to 202309081200 every 6min

—— Diffusion (4 hrs, 32m) —— ROVER-A (4 hours)
>=0.5mm/hr >=2mm/hr >=5mm/hr >=10mm/hr >=15mm/hr >=20mm/hr >=30mm/hr >=50mm/hr >=100mm/hr
1.0 1.0 1.0 10 10 10 1.0 1.0 1.0
mean = 0.885 mean = 0.81 mean = 0.703 mean = 0.544 mean = 0.399 mean = 0.311 mean = 0.229 mean = 0.144 mean = 0.053
meap = 0.83] meap = 0.724 meap = 0.569 mean = 0.321 mean = 0.213 mean = 0.155 meap = 0.087 meap = 0.026 mean = 0.002
0.8 1 \ 054 08 08 - 08 0.8 0.8 4 0.8 4 087
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
w —>
w
[
0.4 1 0.4 4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 1 0.4 1
0.2 0.2+ 0.2 4 0.2+ 0.2 4 0.2 4 0.2 0.2 0.2
L
0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 \gw T T T
] 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 o] 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240
Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins] Lead time [mins]

0.5 2.0 5.0 10.0 5.0 20.0 30.0 50.0 100.0
mm/hr mm/hr mm/hr mm/hr mm/hr mm/hr mm/hr mm/hr mm/hr



v" HONG KONG OBSERVATORY

2025-08-05
06:20H

-Hr Rainfall Distribution Ending at 6:20 AM 2025-08-
o-Kriging+Barnes Analysis for HK -

ResConvLSTM-GAN

1-hour Deep-learning QPF Ending at 2025-08-05 06:18H

05

Black Rainstorm on 5 August 2025

TrajGRU

1-hour Deep-learning QPF Ending at 2025-08-05 06:18H

IAM4VP
QPF Ending at 2025-08-05 06:18H

E£f.R/F (mm)

No. of threshold- mlelg: 93.5
exceeding reference Cap-B: 70.0
@06:29 AM Cap-R: 50.0

30 mm  <:o-A: 39,9

Fourier

1-hour Deep-| QPF Ending at 2025-08-05 06:18H

T+1h nowcast from 6 deep learning algorithms

Earthformer

1-hour Deep-learning QPF Ending at 2025-08-05 06:18H

Diffusion Ensemble Mean
QPF (8-member mean) Ending at 2025-08-05 06:18H




T+ 1h nowcast from diffusion ensemble mean and 8 members

Ensemble Mean Member 1 Member 2 Member 3

1-hour Deep-learmning QPF (8-member mean) Ending at 2025-08.-05 06:18H 1-hour Deep-leamning QPF Ending at 2025-08-05 06:18H 1-hour Deep-learmning QPF Ending at 2025-08-05 06:18H 1-hour Deep-leamning QPF Ending at 2025-08-05 06:18H

80 74

Member 4 Member 6 Member 7 Member 8

1-hour Deep-leaming QPF Ending at 2025-08-05 06:18H p g g 1-hour Deep-learning QPF Ending at 2025-08-05 06:18H 1-hour Deep-learning QPF Ending at 2025-08-05 06:18H 1-hour Deep-learning QPF Ending at 2025-08-05 06:18H

70
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FAR

=

ONG KONG OBSERVATORY

Verification (4 — 5 Aug 2025) — CSI, HSS, POD, FAR

optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean
—— ROVER-A (4 hours)

—— Diffusion (4 hours)

—— Earthformer

>=0.5mm/hr >=2mm/hr >=5mm/hr >=10mm/hr >=15mm/hr >=20mm/hr >=30mm/hr >=50mm/hr >=100mm/hr
10 mean/=0583] +° mean|= Q.4 1o meah =0 g 10 mean|= 0.2 g 10 mean|= Q. 8 10 mean|= Q. 10 mean|= 0,1 10 mean|= Q. 1o mean|=
mean = 0.3 mean|= 0.3 mean = 8421 mean|= (. mean|= Q.2 mean|= Q.2 meah = 1.1 mean|= 0.1 mean|=
0.8 4 mean|= 0521 0.8 4 mean = (. 2 0.84 mean = U./07 0.8 4 = 0.177 0.8 4 mean(= (.08 0.8 4 mean = 0., : 0.8 4 mean/= 0.0 0.8 mean = (. 0.8 4 mean =
06 | \ 06 0.6 1 06 06 06 | 06 | 0.6 06 |
0.4 1 0.4 1 \ 0.4 R 0.4 1 ~T 0.4 1 0.4 1 0.4 0.4 0.4
0.2 0.2 0.2 1 \ 0.2 1 K 0.2 1 \ 0.2 0.2 1 \ 0.2 1 \ 0.2 1
0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T T
0 60 120 180 240 0 60 120 180 240 1] 60 120 180 240 1] 60 120 180 240 1] 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 1] 60 120 180 240
10 mean = OAg 10 mean|= Q.3 1o mean|= 48% 10 mean = g 35 10 mean|= % 10 mean|= Q. %2 10 mean|= Q. Lo mean|= Q. Lo mean|= Q. a
mean|= 83_ mean|= 0.3 mean = 2.3 mean = 0.3 mean|= (. mean|= .7 mean|= (.7 mean|= 0.1 mean|= 0.0
0.8 4 mean(= .49 0.8 4 mean = (. 0.8 1 mean|= 0. /98 0.8 4 mean|=017% 0.8 4 mean|= 017 0.8 4 mean(= 0.09Y 0.8 4 mean = (. 0.8 4 mean = (. 0.8 4 mean = 00027
\ 0.6 - \ 0.6 4 0.6 4 0.6 4 0.6 4 0.6 0.6 1
0.4 0.4 \ 041 \ o4 \ o o o
0.2 0.2 4 \ 0.2 4 \ 0.2 4 \ 0.2 \ 0.2 \ 0.2 4
T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T ~ 0.0 T T T — 0.0 T T T — 0.0 T T T T
60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240
mean|= g Lo mean|= g 10 . Lo mean|= 0.2 10 mean|= 0. 2% 10 meah = 10 mean|= 0127 Lo mean|= Q. f
— 1 | mean=0 mean = . mea ‘ mean|= 89 mean = 0. mean mean =012 mean|= 0.0
mean= 0.5 0.8 1 ————________ mean|= 0.3 0.8 4 \-‘_-_-—‘—4 I - 0.8 4 mean = (. 0.8 4 meapn = 0.08 0.8 4 mean = 0.8 4 mean/= 0.0 0.8 4 mean = 0007
0.6 1 0.6 0.6 \ 0.6 \ 0.6 0.6 - 0.6
0.4 0.4 4 0.4 4 0.4 4 0.4 7 \ 0.4 7 0.4 -
0.2 0.2 0.2 0.2 \ 0.2 K 0.2 \ 0.2 0.2 0.2
0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T ~ 0.0 T T T 0.0 T T T i~ 0.0 T T T i~ 0.0 T T T T
0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 —7
0.8 1 0.8 1 0.8 | 0.8 1 0.8 /,/ 0.8 / 05 1 / 0.8 | /_/\ 0.8 4 7__\_‘7L___’-/~
0.6 0.6 0.6 - 0.6 - % 0.6 4 //_’\'f 0.6 _/_/_\,/ 0.6 v/_u// 0.6 / 0.6
4 4 % 4 Z 0.4 _,,_/"*"/w 0.4 0.4 0.4 1 0.4+ 0.4
0.2 4 TrTe 0.2 4 mean==0343] 0-24 mreanT=—-=t 0.2 4 Tean=3961 0.2 1 mean= 469 0.2 4 mean=0:745] 0-2 mean 0.2 4 mean="=0824] 0-2 megT="[1ap
mean % mean|= (.3 Z mean = (. mearn|= ﬁig mean|= E{ mean|= g g mean mean|= (. § mean|= gégg
mean mean|= 0.2 mean = 0. mean|= 0. mean|= 0. mean|= 0. mean mean|= 0. mean|= 0.
0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T — 0.0 T T T T
0 60 120 180 240 0 60 120 180 240 o] 60 120 180 240 o] 60 120 180 240 o] 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 o] 60 120 18 240

Lead time [mins]

0.5
mm/hr

Lead time [mins]

2.0
mm/hr

Lead time [mins]

5.0
mm/hr

Lead time [mins]

10.0
mm/hr

Lead time [mins]

5.0
mm/hr

Lead time [mins]

20.0
mm/hr

Lead time [mins]

30.0
mm/hr

Lead time [mins]

50.0
mm/hr

Lead time [mins]

100.0
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“” HONG KONG OBSERVATORY

1.0

0.8 4

0.6

FSS

0.4 4

0.2 4

0.0

—— Diffusion (4 hours)

Verification — FSS
optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean

—— Earthformer

—— ROVER-A (4 hours)

>=0.5mm/hr >=2mm/hr >=5mm/hr >=10mm/hr >=15mm/hr >=20mm/hr >=30mm/hr >=50mm/hr >=100mm/hr
1.0 1.0 1.0 1.0 1.0 1.0 1.0 10
meanp = 0.772 meah = 0.698 mean = 0.613 mean = 0.49 mean = 0.394 meah = 0.338 mean = 0.288 mean = 0.237 mean = 0.169
meap = 0.836 meah = 0.766 meap = 0.675 meah = 0.529 meap = 0.441 meah = 0.397 meap = 0.359 mean = 0.256 mean = 0.06]1
mean = 0.722 mean = 0.628 mean = 0.464 meah = 0.278 mean = 0.202 mean = 0.159 mean = 0.108 mean = 0.043 mean = 0.006
0.8 1 \ 0.8 0.8 1 0.8 0.8 1 0.8 1 0.8 1 0.8
0.6 1 0.6 0.6 1 0.6 0.6 1 0.6 0.6 1 0.6
0.4 0.4 4 0.4 0.4 4 0.4 0.4+ 0.4 0.4 4
0.2 4 0.2 4 0.2 4 0.2 4 0.2 4 0.2 4 0.2 1 0.2
T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 \ T T T T
0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 0 60 120 180 240 o 60 120 180 240 o 60 120 180 240 0 60 120 180 240

Lead time [mins]

0.5
mm/hr

Lead time [mins]

2.0
mm/hr

Lead time [mins]

5.0

mm/hr

Lead time [mins]

10.0

mm/hr

Lead time [mins]

15.0

mm/hr

Lead time [mins]

20.0

mm/hr

Lead time [mins]

30.0

mm/hr

Lead time [mins]

50.0

mm/hr

Lead time [mins]

100.0

mm/hr
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Verification — LPIPS

optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean

— Diffusion (4 hours) — Earthformer —— ROVER-A (4 hours)
1.0
mean = 0.48
mean = 0,704
mean = 0,507
0.8
0.6
g
5
0.4 4
better 0.2 -
0.0 T T T T
0 60 120 180 240

Lead time [mins]
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“Al OfAl” in
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improving rainstorm prediction

* Raingauge observations and site-specific QPFs are crucial for
assessment and timeliness of issuing rainstorm warnings (Amber /

RedfiBlacld

* SWIRLS has been providing a suite of nowcast and “post-
processed” rule-based guidance based on optical-flow
extrapolation, ensemble based on perturbed optical-flow field, and
now into Al models and Al-ensemble being in trial

* Note they are updated based on 6-minutely radar scan or |-
minute rapid-scan, but available time vary

* Any effective and robust way to integrate all these guidance as a
one-stop assessment, rapid-update with minutely rainfall
observations!?

= AI-RAINVIS (Artificial Intelligence Rainstorm Analysis
and INtegrated Visuals of SWIRLS)



ONG KONG OBSERVATORY

Al-RAINVIS Model Structure (i)

Universal Station-based
Probabilistic Models

| -hr of actual rf +
3-hr QPF of single
station from
Model |

q LSTM_M,

| -hr of actual rf +
3-hr QPF of single
station from
Model 2

| -hr of actual rf +
3-hr QPF of single
station from
Model 3

q LSTM_M,

q LSTM_M,

2hr Probability of 2
, 50, 70mm/hr of
that single station

Same model structure for every station




OBSERVATORY

Al-RAINVIS Model Structure (ii)

~l o 1 L2l

1 ~a = 1 1 1 L I

4 1 ", |

2 ~l 1 IS | p-
N

| 2hr Probability of
= X mm/hrina
station

T T2l T T T T T T T T T T T T T T T T T T T 1T

L 1 1 1 1T 1 1 1T 1T 7 1T T T T T

e T T T T T T T T T 1T 1T 1T T 1T T T T 1T 1T 1 |

= Universal Rainstorm

Probabilistic Prediction

VideoMAE

(Transformer)

[
i3
PPC

z Model

Same model structure

2hr Probability of
= N stations
reach X mm/hr

for each category of

rainstorm warnings X
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Minutely update
probabilistic
assessments
from different
available
nowcasting tools
with raingauge
observations at
the time

AI-RAINVIS Web-interface
(Artificial Intelligence Rainstorm Analysis and INtegrated Visuals of SWIRLS)

A9 F'E S
q . - LHRA Probability and Timing in 18 Districts
Maximum Probability Map of LHRA Auto Update:
Sai Kung N30
Sha Tin Heavy Rain Alert Panel:
Tai Po N47 | max 10%
North Include NT Flood Station: ]
Kwai Tsing
Tsuen Wan Current time:
Yuen Long
Tuen Mun 202309072135
Islands N27 [ J m
Kwun Tong K05 | | max 6% Al-RAINVIS Base Time: 2023-09-07 21:30H
Wong Tai Sin
Yau Tsim Mong
Eastern H29 o e ?0%
Wan Chai Hos | max 12%
Southern | H28 [ Tmax99%
Central & Wastern H17 | max 9%
2125 2140 2155 2210 22:25 22:40 2255 2310
Forecast time ARROW-HKO: ()
! © QOpenSireetMap contributors. 5% @ z25% @ Maximum Probability Highcharis com
Date Time XGBoost-based AI-RAINVIS Rule-based XGBoost-based Al-RAINVIS Rule-based XGBoost-based AI-RAINVIS ARROW Max
Prob (Amber) THr Max  2Hr Max Prob (Red) Prob (Red) 1Hr Max  2Hr Max Prob (Black) Prob (Black) THrMax  2Hr Max Warning [###]
2023-09-07 21:35 H 99 99 MH H 94 91 ML M 9 13 A[M8S]
2023-09-07 21:34 H 99 99 M MH 95 92 ML ML 9 11 A[M8S]
2023-09-07 21:33 H 99 99 M MH 95 92 ML ML 8 11 A[M8S]
2023-09-07 21:32 H 99 99 M MH 94 91 ML ML 7 1" A[M8S]
2023-09-07 21:31 H 99 97 M M 30 29 ML ML 0 1 A[M8S]
2023-09-07 21:30 H 99 o7 M M 30 29 ML ML 0 1 A[M8E]
2023-09-07 21:29 H 99 97 MH H 29 29 M ML 0 1 A[M8S]
2023-09-07 21:28 H 99 96 MH H 29 29 M ML 0 1 A[M8S]
2023-09-07 21:27 H 98 96 MH H 28 28 M ML 0 1 A[M8S]
2023-09-07 21:26 H 98 95 MH H 27 28 M ML 0 1 A[M8S]
2023-09-07 21:25 H 99 98 MH H 54 54 M ML 2 4 A[M8S]

Amber

Blacl




csl

POD

FAR

ONG KONG OBSERVATORY

AIl-RAINVIS Verification

Lo Accuracy Metrics
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Prob | Csl
0.257 22 44 65

Red (MH) 0.537 39 6l 8

Black (MH)  0.450 53 68 84

Black (H) 0.521 0 3 25

Verification against actual # of raingauges reaching
Amber/Red/Black level when respective probability
category is met
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Way forward on Al Nowecast Support

* Deep learning nowcast algorithms

— More efficient diffusion based technique (spatio-temporal latent diffusion) to speed up training and
inference

— Enhancement of satellite-based reflectivity and rainfall nowcasts (Earthformer, diffusion)
— Physics constraints and inputs from NWP / AIWP

“Al of Al” approach to add values

— Extend ML technique to LLM (or SLM/VLM for specific high impact convective weather or site-specific
assessments)

Al-based automatic tropical cyclone detection and intensity analysis

Regional collaboration on Al nowcasting techniques
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Al in Tropical Cyclone Analysis and Nowcast

Al -STO RMVI S Updated every YOLOV6 model for

10 minutes TC detection and

— Al-driven Satellite-based TC Object Recognition,

position fixing

Motion Visualisation and Intensity estimation Processed
H-8/9 5
System e Analysis + track

data per TC

Images

CNN model for TC
intensity estimation

— TC detection and position fixing
* You Only Look Once (YOLO) small

. . fc_3 fc 4
ObleCt deteCtlon mOdeI Fully-Connected Fully-Connected
Neural Network Neural Network
* Ensemble detection models Lomt o ReLU activation |
Lonvoiution Convolution A
(5x5) kernel Max-Pooling (5x5) kernel Max-Pooling (with

valid padding valid padding

(2x2) (2x2) A\

\ \rop\out)

— TC intensity estimation

* Convolutional neural network (CNN)

— Visualisation web-based platform ~  E—

\\| ®
nl channels nl channels n2 channels n2 channels ||| «
W\ ®

\""/i' OUTPUT

n3 units
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AI-STORMVIS on RSMC website (under trial)

STAMP GIS (Trial) Base Time (UTC): ¥ AutoUpdate ¥ UTC Time
Select Layer:

{ a | B A-sTORMVIS

IC Information:

Base Time: 2025-09-23 22:50 UTC

TC ID: 2518

TC Name: RAGASA

Centre: 21.22°N, 113.68°E

Estimaed Max Winds: 130.0knots (Cl#: 7.0)
Radius of Max Winds: 21.4km

Central Pressure: 916.7hPa

Pressure Deflict: 89.3hPa

Movement and Direction:

Past 1 hr: 19.5km/h; W (279deg)

Past 3 hrs: 21.9km/h; W (273deg)
Past 6 hrs: 23.8km/h; W (275deg)
Past 12 hrs: 23.9km/h; WNW (282deg)
Past 24 hrs: 22 8km/h; WNW (288deg)

Remarks:
Radius of Outermost Isobar: 4.7deg
Environmental Pressure: 1006.0hPa

Detected Track

¢ O Detail Detected Track |85
[J Warning Track

P [ z
Cursor Coordinate:
43.26°N, 120.01°E

hyse e o
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Collaboration with PAGASA and TMD in
knowledge transfer and implementing Com-SWIRLS
and deep learning nowcast models

L=

e e e
Model Training: TrajGRU with Pretraining, Individual Radars o Model Evaluation—Test TCData
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knowledge transfer and implementing Com-SWIRLS
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Thai Meteorological Department
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Thai Meteorological Department

singiian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo, 2017:
Deep learning for precipitation nowcasting: A benchmark and a new medel

TrajGRU Model

Radar COmpOSIte in PPl Lowest Elevatlon TeChmque Worked for TrajGRU Model: Result (TH only VS TH + HKO7 — KKN site)

PPI Reflectivity for SNK, KKN, SKM 2022-09-01T0800Z . N
sflectivity-for (After revising mask file and frequency sequence time)
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Thank you very much



	슬라이드 1: AI-based nowcasting in  extreme weather prediction
	슬라이드 2: Outline
	슬라이드 3
	슬라이드 4: Encoding-forecasting ConvLSTM network
	슬라이드 5: Trajectory Gated Recurrence Unit (TrajGRU)
	슬라이드 6
	슬라이드 7: Earthformer
	슬라이드 8: Enhanced feature preservation using Fourier Amplitude and Correlation Loss (FACL)
	슬라이드 9: Implicit Stacked Autoregressive Model for Video Prediction (IAM4VP)
	슬라이드 10
	슬라이드 11
	슬라이드 12: Denoising Diffusion Probabilistic Model (DDPM)
	슬라이드 13: DDPM implementation
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17: 1-hour nowcasts from extrapolation and multi-model deep learning techniques
	슬라이드 18: 2-hour nowcasts from extrapolation and multi-model deep learning models
	슬라이드 19
	슬라이드 20
	슬라이드 21: Deep Learning Models in  Regional Nowcasting Supports
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25: Earthformer
	슬라이드 26
	슬라이드 27: Earthformer for CMA radar composite with H9/GK2A satellite simulated reflectivity in AINPP intercomparison project
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31: Ensemble Nowcast and AI-based Guidance in  Extreme Precipitation Prediction
	슬라이드 32
	슬라이드 33
	슬라이드 34: Exceptionally severe rainstorm on 7-8 September 2023
	슬라이드 35: 32-member DDPM ensemble
	슬라이드 36
	슬라이드 37
	슬라이드 38: Diffusion (ensemble mean) vs optical flow extrapolation  (CSI, HSS, POD, FAR)
	슬라이드 39: Diffusion (ensemble mean) vs optical flow extrapolation  (FSS 3x3 window size)
	슬라이드 40
	슬라이드 41
	슬라이드 42: Verification (4 – 5 Aug 2025) – CSI, HSS, POD, FAR optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean
	슬라이드 43: Verification – FSS optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean
	슬라이드 44: Verification – LPIPS optical flow vs Earthformer (2 hrs) vs Diffusion ensemble mean
	슬라이드 45: “AI of AI” in improving rainstorm prediction
	슬라이드 46: AI-RAINVIS Model Structure (i)
	슬라이드 47: AI-RAINVIS Model Structure (ii)
	슬라이드 48: AI-RAINVIS  Web-interface (Artificial Intelligence Rainstorm Analysis and INtegrated Visuals of SWIRLS)
	슬라이드 49
	슬라이드 50: Way forward on AI Nowcast Support 
	슬라이드 51: AI in Tropical Cyclone Analysis and Nowcast
	슬라이드 52: AI-STORMVIS on RSMC website (under trial)
	슬라이드 53
	슬라이드 54
	슬라이드 55

